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SUMMARY

This publication is discussing methods that are used
for the solution of hydrodynamic governing equations in
numerical models of the atmosphere. The number of
methods in use in these models is, one might find, sur-
prisingly great; thus, in addition to analysis of problems
involved and techniques used for investigation of proper-
ties of various schemes, a discussion is included only of
schemes which are more widely used, or which are
expected by the authors to become more widely used in
the near future.

The present volume is restricted to grid point finite
difference methods, and, furthermore, to problems and
methods used for time and horizontal space differencing.
One remaining topic of the horizontal space differencing,
that of the numerical solution of the advection equation
with rwo dependent variables (advection terms of the
two-dimensional primitive equations) will be included in
the Volume Il of the publication.

In Chapter 1 of this volume, following a short histori-
cal introduction on the development and use of numerical
methods in atmospheric models, avilable methods for
numerical solution of the differential equations governing
the atmosphere are briefly reviewed. Then, basic ele-
ments of the finite difference method for solving these
equations are introduced. Finally, the concept of
stability of finite difference equations, and methods for
testing the stability of these equations, are considered
at some length.

Chapter II presents a discussion of time differencing
schemes which are elementary enough so that they can
be defined using a simple ordinary differential equation,
with one dependent variable. After defining a number
of such schemes, behaviour of numerical solutions is
investigated which are obtained when these schemes are
used for two specific ordinary differential equations:

This volume is based on a revised translation of a part of the
textbook on dynamic metcorology, written by the first of the present
authors, for scnior ycar students of the Department of Meteorology,
University of Belgrade. In writing the translated part of that
textbook, however, extensive use was made of lecture notes written

oscillation (or frequency) equation, and friction equation.
Discussion of the leapfrog scheme includes a more
detailed analysis of the computational mode problem.

Chapter 111 deals with the numerical solution of those
forms of the advection equation which describe advection
of one dependent variable. Schemes are analysed first
considering the simplest one-dimensional linear advec-
tion equation, with special emphasis given to the prob-
lems of phase speed errors and computational dispersion,
and group velocity errors. Then a brief account is
included of the extension to two space dimensions.
Finally, nonlinear advection equation is considered.
Aliasing error and nonlinear instability is discussed, and
a review is given of methods used to suppress or prevent
nonlinear instability in atmospheric numerical models,
including a detailed exposition of the principle of the
Arakawa method.

In Chapter IV schemes and problems related to the
numerical solution of the gravity and gravity-inertia wave
equations are considered. First, a discussion is given of
the effects of space differencing on the numerical solution
of the gravity wave equations. Having now two or
three dependent variables, the problem of the space
distribution of variables becomes of interest. Con-
sidering gravity-inertia wave equations, five different
space distributions are analysed with respect to their
effect on the geostrophic adjustment process. Then, a
review is given of schemes and methods used to ac-
complish an economical use of computer time and/or
elimination of computational modes in handling the
gravity wave terms —the Eliassen grid, economical
explicit schemes, the semi-implicit scheme, and the
splitting method. Finally, as the gravity waves can
generate a false space and/or time noise in the calcula-
tions, some techniques available for prevention or sup-
pression of such space (two-grid-interval) and time noise.

by A. Arakawa for his course 212A, Numerical Methods in Dynamic
Meteorology, that he has been teaching at the Department of
Meteorology, University of California at Los Angeles. The revised
translation was read and further revised by A. Arakawa and,
finally, edited by M. J. P. Cullen of the Meteorological Office.
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FOREWORD

Meteorology was one of the very first fields of physical
science that had the opportunity to exploit high speed
computers for the solution of multi-dimensional time-
dependent non-linear problems. The authors of this
monograph trace the precedents from Bjerknes to von
Neumann. The numerical techniques first employed were
based on a small existing body of methodology, much
of which was drawn from engineering practice, such as
the application of relaxation methods to the solution of
Poisson’s equation. The working repertoire of numerical
methods rapidly expanded as the physical problems grew
in complexity and as practical experience accrued. The
growth was almost exclusively the result of the innova-
tions of the *“using” physical scientists themselves. As a
consequence these advances often lacked the rigour and
proof that might have been expected from applied
mathematicians. The results of this evolution are to be
found scattered throughout the meteorological literature
of the past 25 years and it became apparent that there
was a growing need for a systematic account of the
rationale and development of technique. The JOC felt
that GARP's needs, as reflected by the rapid influx of
new scientists into numerical modelling, would be well
served by the availability of a single definitive source.
Other related disciplines such as oceanography have also

indicated a need for a means to rapidly assimilate the
accumulated experience of meteorology. The first attempt
was at the hands of two able mathematicians, H. Kreiss
and J. Oliger, who contributed a much needed sense of
mathematical unity in their monograph ‘“‘Methods for
the Approximate Solution of Time-Dependent Problems™
(G.P.S. No. 10, 1973). This present volume, more
specifically reflecting experience with atmospheric models,
has been written by two outstanding workers in the field,
Prof. F. Mesinger and Prof. A. Arakawa, with Dr. A.
Robert as general editor. An additional volume will be
published containing chapters on the subjects: spectral
methods, global mapping problems, and finite element
methods.

J. SMAGORINSKY
Chairman, Joint Organizing Committee



SUMMARY

This publication is discussing methods that are used
for the solution of hydrodynamic governing equations in
numerical models of the atmosphere. The number of
methods in use in these models is, one might find, sur-
prisingly great; thus, in addition to analysis of problems
involved and techniques used for investigation of proper-
ties of various schemes, a discussion is included only of
schemes which are more widely used, or which are
expected by the authors to become more widely used in
the near future.

The present volume is restricted to grid point finite
difference methods, and, furthermore, to problems and
methods used for time and horizontal space differencing.
One remaining topic of the horizontal space differencing,
that of the numerical solution of the advection equation
with two dependent variables (advection terms of the
two-dimensional primitive equations) will be included in
the Volume II of the publication.

In Chapter I of this volume, following a short histori-
cal introduction on the development and use of numerical
methods in atmospheric models, avilable methods for
numerical solution of the differential equations governing
the atmosphere are briefly reviewed. Then, basic ele-
ments of the finite difference method for solving these
equations are introduced. Finally, the concept of
stability of finite difference equations, and methods for
testing the stability of these equations, are considered
at some length.

Chapter II presents a discussion of time differencing
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be defined using a simple ordinary differential equation,
with one dependent variable. After defining a number
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Discussion of the leapfrog scheme includes a more
detailed analysis of the computational mode problem.

Chapter IIl deals with the numerical solution of those
forms of the advection equation which describe advection
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tion equation, with special emphasis given to the prob-
lems of phase speed errors and computational dispersion,
and group velocity errors. Then a brief account is
included of the extension to two space dimensions.
Finally, nonlinear advection equation is considered.
Aliasing error and nonlinear instability is discussed, and
a review is given of methods used to suppress or prevent
nonlinear instability in atmospheric numerical models,
including a detailed exposition of the principle of the
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numerical solution of the gravity and gravity-inertia wave
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the effects of space differencing on the numerical solution
of the gravity wave equations. Having now fwo or
three dependent variables, the problem of the space
distribution of variables becomes of interest. Con-
sidering gravity-inertia wave equations, five different
space distributions are analysed with respect to their
effect on the geostrophic adjustment process. Then, a
review is given of schemes and methods used to ac-
complish an economical use of computer time and/or
elimination of computational modes in handling the
gravity wave terms — the Eliassen grid, economical
explicit schemes, the semi-implicit scheme, and the
splitting method. Finally, as the gravity waves can
generate a false space and/or time noise in the calcula-
tions, some techniques available for prevention or sup-
pression of such space (two-grid-interval) and time noise.

by A. Arakawa for his course 212A, Numerical Methods in Dynamic
Meteorology, that he has been teaching at the Department of
Meteorology, University of California at Los Angeles. The revised
translation was read and further revised by A. Arakawa and,
finally, edited by M. J. P. Cullen of the Meteorological Office.



CHAPTER 1

INTRODUCTION; GENERAL REMARKS ABOUT GRID POINT METHODS

In this chapter, following a short historical introduction
on the development and use of numerical methods in
atmospheric models, methods available for numerical
solution of the differential equations governing the
atmosphere will be briefly reviewed. Then, basic elements
of the finite difference method for solving these equations
will be introduced. Finally, the concept of stability of
finite difference equations, and methods for testing the
stability of such equations, will be discussed at some
length.

|. Historical introduction

It is considered that Wilhelm Bjerknes (1904) was the
first to point out that the future state of the atmosphere
can in principle be obtained by an integration of differen-
tial equations which govern the behaviour of the atmo-
sphere, using as initial values fields describing an observed
state of the atmosphere. Such an integration performed
using numerical methods is called numerical weather
prediction. When, however, a numerical integration is
performed starting from fictitious initial fields, it is called
numerical simulation.

A first practical attempt at a numerical weather predic-
tion was made by Richardson. After very tedious and
time-consuming computations, carried out mostly during
the First World War, Richardson obtained a totally
unacceptable result. Despite this, he described his
method and results in a book (Richardson, 1922), and
this is today one of the most famous in meteorology.

The wrong result obtained by Richardson, and his
estimate that 64,000 men are necessary to advance the
calculations as fast as the weather itself is advancing,
left some doubt as to whether the method would be of
practical use. A number of developments that followed,
however, improved the situation. Courant, Friedrichs
and Lewy (1928) found that space and time increments
in integrations of this type have to meet a certain stability
criterion. Mainly due to the work of Rossby in the late
1930’s, it became understood that even a rather simple
equation, that describing the conservation of absolute
vorticity following the motion of air particles, suffices for
an approximate description of large-scale motions of the
atmosphere. Finally, in 1945, the first electronic computer
ENIAC (Electronic Numerical Integrator and Computer)

was constructed. The absolute vorticity conservation
equation, and this first electronic computer, were used
by Charney, Fjertoft and von Neumann in the late 1940’s
for the first successful numerical forecast (Charney et al.,
1950).

Much faster computers, and improved understanding
of computational problems, now also enable long-term
integrations of the basic primitive equations. It is gener-
ally considered that integration of the primitive equations
enables easier incorporation of various physical processes
than the integration of modified equations, that is, inte-
gration of the divergence and vorticity equations. Thus,
it is mostly the primitive equations that are used today for
practical numerical forecasting by meteorological services.
Charts obtained by numerical forecasting are used by
synopticians in these services as the principal basis for
decisions on forecasts issued for public use.

A number of research groups have been actively
engaged for more than a decade in development of models
for the numerical simulation of the general circulation
of the atmosphere. In such simulations starting from a
fictitious initial state, e.g. an isothermal and motionless
atmosphere, is often considered to be an advantage for
the experiments. It enables a test of the ability of th:
computational and physical schemes of the model to
simulate an atmosphere with statistical properties similar
to those of the real atmosphere, with no, or not much,
prior information on these properties.

Numerical models are also very frequently developed
for studies of some smaller-scale atmospheric phenomena.
Foremost among these are studies of the cumulus convec-
tion problem, and simulation of processes within the
planetary boundary layer. In this text, however, we
shall primarily have in mind the application of numerical
methods to prediction and simulation of large-scale
atmospheric motions.

2. Methods for the numerical solution of the equations of
motion

Numerical solution of the equations of motion today
in most cases is performed using the grid point method.,
In this method a set of points is introduced in the region
of interest and dependent variables are initially defined
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and subsequently computed at these points. This set of
points is called the grid. The words mesh or lattice are
also used. It is necessary to have the grid points at fixed
locations in the horizontal. This means that, according
to the Eulerian system of equations, space and time
coordinates are chosen as independent variables.

A number of attempts have been made to develop
atmospheric models using an approach which is at least
partly Lagrangian. Serious difficulties are encountered
when a straightforward numerical integration of the
Lagrangian system of equations is undertaken. However,
it is possible to construct methods with some Lagrangian
properties ; for example, to have some or all of the compu-
tation points moving with the fluid. In hydrodynamics
a number of such methods have proved to be very useful,
especially for some problems which are not amenable
to treatment by a strictly Eulerian technique (e.g. Harlow
and-Amsden, 1971). However, in meteorology the per-
formance of Lagrangian or semi-Lagrangian models
that have so far been developed has not been quite satis-
factory. A discussion of one way of constructing a
Lagrangian model, and a review of earlier attempts, can
be found in a paper by Mesinger (1971).

Another possible approach is to express the spatial
dependence of the variables in terms of a series of ortho-
gonal functions,and then substitute this into the governing
equations. In this way the equations reduce to a set of
ordinary differential equations, so that the coefficients
of the series can be computed as functions of time. This
is the spectral method of solving the governing equations.
Until relatively recently it was considered that in effi-
ciency the spectral method could not be competitive
with the grid point method. But the use of the fast
Fourier transform has completely changed the situation
and investigation of spectral methods is now the subject
of intensive research.

In the following we shall consider the technique of
using the grid point method, and the problems associated
with it, using grid of computation points fixed in space.
This is the most direct way of solving the equations of
motion numerically. Furthermore, knowledge of this
method is necessary for the investigation and under-
standing of the relative merits of other alternatives
mentioned in this section.

3. Basic clements of the grid point method

With the grid point method, the most common way
of solving the governing equations is to find approximate
expressions for derivatives appearing in the equations.
These approximate expressions are defined using only
values of the dependent variables at the grid points,
and at discrete time intervals. Thus, they are formed

using differences of dependent variables over finite
space and time intervals ; for that reason this approach
is called the finite difference method. The approximations
for derivatives are then used to construct a system of
algebraic equations that approximates the governing
partial differential equations. This algebraic system is
considered valid at each of the interior grid points of
the computation region. For the initial time and at
space boundary points, additional constraints or equa-
tions are defined that approximate the initial and bound-
ary conditions as required by the physics of the problem.
The set of algebraic equations obtained in this way is
then solved, usually using an electronic computer, by a
suitable step-wise procedure.

We shall now consider some basic elements of the
finite difference method. For simplicity, we start by
considering a function of one independent variable

u=u(x).

The function u is a solution to a differential equation
that we are interested in. We want to find an approxima-
tion to this solution in a bounded region R of the inde-
pendent variable, having a length L. The simplest way
of introducing a set of grid points is to require that they
divide the region R into an integer number of intervals
of equal length Ax. This length Ax is called the grid
interval, or grid length. Let us denote the number of
grid intervals by J. It is convenient to locate the origin
of the x axis at the left-hand end of the region R. Thus,
we are looking for approximations to u (x) at discrete
points x = jdx, where j takes integer values 0,1,2,.. ., J.
These approximate values we shall denote by

Uy = Uy (fdx).

Thus, we are interested in finding J + 1 values u;.

Knowledge of a discrete set of values u;, even if the
approximations were perfect, offers, obviously, less
information than knowledge of the function u (x). Let
us briefly consider the situation in that respect. We shall
very often find it convenient to think of the function
u(x) as being formed by a sum of its Fourier compo-
nents, that is

u[x}=%q+ E (a,, cos 2nn ft + b, sin 2nn1—’f :
n>l

Now, the available J 4 | values ¥, do not enable the
computation of all of the coefficients a,, b,; rather,
they can be used to compute only J -+ 1 different
coefficients. A natural choice is to assume that the
J + | values u; define the near value a, and as many as
possible of the coefficients of the Fourier components at
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the long wave length end of the series, that is, coefficients
J
forn=1,23,..., 5" Of these components, the one with

the shortest wavelength will have n = J/2, with the wave
length L 2L 2L _ yy
x

Having made that choice, we can say that with values u;
at discrete points x = jdx it is not possible to resolve
waves with wave length shorter than 24x.

Now let us consider the differences between values
that will be used to construct approximations to deriva-
tives. These differences are called finite differences. They
can be calculated over one or more of the intervals 4x.
Depending on the relation of the points from which the
values are taken to the point where the derivative is
required, they can be centered or uncentered. An un-
centered difference is, for example, the forward difference

duy = vy —uy.

More often centered (or central) differences are used,
such as
Buyer, = upn—uy.

In a centered difference the difference is between values
symmetrical about the point where the difference is
being calculated.

One way to construct an approximation to a differen-
tial equation is to simply replace the derivatives by appro-
priate finite difference quotients. For example, for the
first derivative one can use the approximation
(ﬂﬂ Y

Ax G.)

dx

!

The finite difference quotient here is, of course, only one
of many possible approximations to the first derivative
at point j.

If a finite difference quotient, or a more complex
expression, is to be used as an approximation to a deri-
vative, it is required, above all, that this approximation
be consistent. This means that the approximation should
approach the derivative when the grid interval approaches
zero. The quotient (3.1), obviously, has that property.

Important information is obatined when the true
solution u (j4x) is substituted into an approximation
to the derivative in place of the grid point values u;, and
u (jdx) is expanded in a Taylor series about the central
point. For the quotient (3.1) this procedure gives

Ujyy = U fi‘ 1 d*u 1 du 2
T ~(dx),.+ 2\aw) A s (a4

The difference between this expression and the derivative

(‘—if) being approximated ; in this case
dx /4

1 [d*u 1 [du 2
£=3 (J;r);’" 5 dx-‘),. Lk e

is called the truncation error of the approximation to the
derivative. These are terms that were “truncated ofl”
to form the approximation. The truncation error gives
a measure of how accurately the difference quotient
approximates the derivative for small values of dx.

The usual measure of this is the order of accuracy of an
approximation. This is the lowest power of 4x that
appears in the truncation error. Thus, approximation
(3.1) is of the first order of accuracy. We can write

e = 0(4x).

For an approximation to the derivative to be consistent
it must, obviously, be at least first order accurate.

4. Finite difference schemes

The algebraic equation obtained when derivatives
in a differential equation are replaced by appropriate
finite difference approximations is called a finite difference
approximation to that differential equation, or a finite
difference scheme. In this section we shall introduce the
concepts of consistency, truncation error, and accuracy,
for a finite difference scheme.

As an example, we shall use the linear advection
equation

d
9—: + cg—z =0y u=u (x,1), c = a positive const.(4.1)

It describes advection of the variable  at a constant
velocity ¢ in the direction of the x axis. The solution
to this simple equation can, of course, also be obtained
by an analytic method. It will be useful to obtain the
analytic solution first, in order to investigate properties
of numerical solutions by comparing them against
known properties of the true solution.

It is convenient to this end to change from variables
x,t to variables E,7 with the substitution E = x—cr.
Using the notation

u(x,1)=U(E,1)
we obtain
u_QU g oU9r_ _ U IV
dr ~®& gt a1 a1 & " ar’
ou_oUat v o _ 2y
dx J% dx It dx JE
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Substitution of these expressions into (4.1) gives

a
EU{&,!,':O.

Thus, it is seen that U cannot be a function of ¢, but can
be an arbitrary function of §. A solution of (4.1) is,
therefore,

u = f(x—ct),

where fis an arbitrary function. This, we see, is the
general solution of the advection equation (4.1), since
it can satisfy an arbitrary initial condition

u(x,0) = F(x).

4.2)

4.3
Thus,

u= F(x—ct), 4.4)

is the solution of (4.1) satisfying the initial condition
(4.3).

For a physical interpretation, it is often convenient to
consider the solution in the x,¢ plane. In the present
case, we see that the solution takes constant values along
the straight lines

Xx—ct = const.
These lines are the characteristics of the advection equa-

tion; one of them is shown in Fig. 4.1. We can say
that the solution propagates along the characteristics.

t x—ct = const = X,
u = const = u (x,, 0)

Xp

One of the characteristics of the linear advection
equation (4.1).

Figure 4.1

Let us now construct a scheme for finding an approxi-
mate solution to (4.1) using the grid point method.

We are now looking only for an approximate solution
at the discrete points in the (x,r) plane formed by the
grid shown in Fig. 4.2. The approximate solution at a
point (jAx, nAt) is denoted by uj.

The behaviour of the true solution, which propagates
along characteristics in the x, 7 plane, suggests constructing
the approximate cquation by replacing the time derivative

(n+ 1) 4t

nAt u

- a

(n—1) 4t

(j—1) dx jax (j+ 1)4dx

Figure 4.2 A finite difference grid for finding an approximate
solution of (4.1).

by a forward difference quotient, and the space derivative
by a backward difference quotient. In this way we obtain
the scheme
4] 4e u = ujy ~0.
At Ax
This scheme could be called a forward and upstream
scheme, the latter word indicating the position of the
point j—1 relative to the advection velocity. It is, of
course, only one of many possible consistent finite
difference schemes for the differential equation. There
are many schemes which approach the differential equa-
tion when the increments 4x, 4t approach zero.

(4.5)

Since for small values of Adx, 4t a finite difference
equation approximates the corresponding differential
equation, we can expect that its solution will be an approx-
imation to the solution of that equation. We shall call
solutions given by finite difference schemes numerical
solutions. There are, of course, both approximate and
numerical solutions obtained by other methods which
will not be considered in this publication. It is most
convenient to study the properties of numerical solutions
when they can be compared with known solutions of the
original differential equation, which we shall refer to as
true solutions. The difference between the numerical
and the true solution

u? —u (jdx, ndt) (4.6)

is the error of the numerical solution.

For obvious reasons, we cannot often expect to know
the error of the numerical solution. However, we can
always find a measure of the accuracy of the schenme by
substituting the true solution u (j4x, ndt) of the equation
into the numerical scheme. Since the true solution will
not satisfy the numerical equations exactly, we will have
to add an additional term to keep the equation valid.
Let us denote this term by €. For example, in the case
of scheme (4.5) this procedure gives
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u (jdx, (n+1) 41) - u (jdx, ndt
At +

u (jdx, ndt) —u ((j—1) 4x, nd1) _
Ax -

4.7

+c E.

The term & we shall call the truncation error of the finite
difference scheme. It shows how closely the true solution
satisfies the equation of the scheme, and, thus, gives a
measure of the accuracy of the scheme.

We can obtain a more useful form for the expression for
the truncation error by performing a Taylor series
expansion of the true solution about the central space
and time point. Using the original differential equation
to eliminate the leading term we obtain the truncation
error (4.7) as

1 1 Pu 2
K= on A Fggn Ul +

1 Pu 1%, 2 4.3)
“Wartr—ga W )

As before, these are the terms that were “‘truncated
off” to make the differential equation reduce to our
finite difference scheme.

In the same way as for an approximation to the deri-
vative, the order of accuracy of a finite difference scheme
is the lowest power of Ax and 4t that appears in the
truncation error. Thus, scheme (4.5) is first order
accurate, We can write

€= 0(41) + 0(4x),
or

€ = 0(4x, 4t).
[t is useful to make a distinction between orders of
accuracy in space and in time, especially when the lowest
powers of 4x and A4t are not the same. As before, a
necessary condition for consistency of a scheme is that
it be at least of the first order of accuracy.

5. Convergence

The truncation crror of a consistent scheme can be
made arbitrarily small by a sufficient reduction of the
increments 4x and 4t. Unfortunately, we cannot be sure
that this will also result in a reduction of the error of
the numerical solution. For that reason, we return to
consideration of the error uj —u(jdx, ndt).

Following Richtmyer and Morton (1967) we ask two
questions :

(¢) What is the behaviour of the error uj —u ( jdx, ndt)
when, for a fixed total time ndr, the increments Ax, At
approach zero?

(b) What is the behaviour of the error uf —u (jdx, ndt)
when, for fixed values of A4x, 4t, the number of time
steps # increases ?

The answer to the first of these questions depends on
the convergence of the numerical solution : if the error
approaches zero as the grid is refined (as 4x, 4t - 0)
the solution is called convergent. If a scheme gives a
convergent solution for any initial conditions, then the
scheme also is called convergent.

Consistency of a scheme does not guarantee conver-
gence ; we shall illustrate this by a simple example.
We still consider the scheme (4.5) ; its truncation error
(4.8) approaches zero as the grid is refined, and, there-
fore, this is a consistent scheme. But consider the
numerical solution, when the grid lines and character-
istics are as shown in Fig. 5.1. The characteristic passing
through the grid point taken as the origin in this example
passes through another grid point, A4, denoted by a
square. Thus, the true solution at A, is equal to the
initial value at the origin. However the numerical
solution given by (4.5) A is.computed using the values
at points denoted by circles. The shaded domain,
including all of these points, is called the domain of
dependence of the numerical scheme. The grid point at
the origin is outside that domain, and, thus, cannot
affect the numerical solution at 4,. Therefore, the error
can be arbitrarily great. If the space and time steps
were reduced by the same relative amount, say to one
half of their values in the figure, the domain of dependence
would still remain the same, and this situation would not
change. Thus, as long as the ratio of the steps 4x and 4t
remains the same, refinement of the grid cannot bring
about a reduction in the error of the numerical solution.

t

X—ct = const

A possible relative position of a characteristic and of
a domain of dependence.

Figure 5.1

A necessary condition for convergence of a scheme is,
obviously, that the characteristic defining the true solu-
tion at a grid point is inside the domain of dependence
of the numerical solution at that point. in our example,
this will happen when the slope of the characteristics
is greater than the slope of the dashed line bounding the
domain of dependence, that is, when
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cdt << Ax

5.1

Thus, this is a necessary condition for convergence
of (4.5).

6. Stability

The answer to the second question raised at the begin-
ning of the section 5 depends on the stability of the numer-
ical solution. A rigorous definition of stability employs
the concepts of functional analysis, and refers to the
boundedness of the numerical solution only (e.g. Richt-
myer and Morton, 1967). The difficulties in defining
stability are caused by the fact that the true solution,
in general, does not have to be bounded. However,
when we know that the true solution is bounded, as in
the equations we are interested in here, we can use a
definition referring to the boundedness of the error
uj—u (jdx, ndt). We say that a solution uj is stable if
this error remains bounded as n increases, for fixed
values of 4x, 4t. As before, we say that a finite difference
scheme is stable if it gives a stable solution for any initial
conditions. :

Stability of a scheme is a property of great practical
significance. There are consistent schemes, of a high
order of accuracy, that still give solutions diverging
unacceptably fast from the true solution. Thus, conditions
for stability, if any, should be known. There are three
methods that can be used to investigate the stability
of a scheme, and we shall give an example of each of
these methods. We shall do this by considering again
the forward and upstream scheme (4.5).

Direct method. Since we know that the true solution
is bounded, it suffices to test the boundedness of the numer-
ical solution. The scheme (4.5) can be written as

uf™ = (1= uj + pujy, (6.1)
where
K= cdtfdx.

If 1--p -0, which happens to be also the necessary
condition for convergence, we will have

[ | < A=) | uf | + 1] ufa | (6.2)
We can apply this at the point where at time level n + 1
|uf*'| is a maximum, Max, |4}*'|. The right side
of (6.2) can only be increased by replacing | 7| and
| uf'y | by the maximum value at level n, Max, |« |.
The two terms on the right side can then be added, and
we obtain
Max, | 4™ | < Max, | u} |.

This proves the boundedness of the numerical solution.
Hence, | —p = 0 is seen 10 be a sufficient condition for
stability of (6.1).

This direct testing of the stability is simple. Unfortun-
ately, as might be anticipated from the argument, it is
successful only for a rather limited number of schemes.

Energy method. This method is of a much wider appli-
cability, and can be used even for nonlinear equations.
If we know that the true solution is bounded, we test

whether Z (up)? is also bounded. If it is, then every

value u} must be bounded, and the stability of the
scheme has been proved. The method is called the energy
method since in physical applications u* is often propor-
tional to some form of energy. Of course, there are
examples when this is not so.

Squaring (6.1) and summing over j we obtain

FARA

PR Zl(l-p)z(u; ¥+ 2u(pu ul +

! s (6.3)
2 n 2

+ui(u) ]

We shall assume a cyclic boundary condition, for example

U,y = Uys

noy2 m2
Z(u}-_ﬂ = Z (u}-) "
] J
Now, using Schwarz’s inequality

Zab <1/? ]/ZF.

and (6.4), we can write

Yiurul < VE( u")’ VZ V=Y’ (6.5)
J s J J

Using (6.4) and (6. 5) we see that, if 1 —p = 0, (6.3) gives
the inequality

Z-‘l (uj"""}z«s
J
Z (“jﬂ+|)2€. ;(2;)2-
/

Thus, 1 —p = 0, coupled with the cyclic boundary condi-
tion, is proved to be a sufficient condition for stability
of (6.1).

Von Neumann's method. Von Neumann's, or the
Fourier series method is the most frequently used method.

then

6.4

(141 + 20 (1-p) +}12] ¢ u"y,
or /
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We will usually not be able to use it to test the stability
of nonlinear equations, and will have to resort to the
analysis of their linearized versions. A solution to a
linear equation, however, can be expressed in form of a
Fourier series, where each harmonic component is also
a solution. Thus, we can test the stability of a single
harmonic solution ; stability of all admissible harmonics
will then be a necessary condition for stability of the
scheme.

For an illustration of this method, it is useful first to
obtain an analytic solution of the equation (4.1)

du du
5}'+C-a—x—0.

in the form of a single harmonic

u (x,t) = Re [U(r) e"“] : (6.6)
Here U (¢) is the wave amplitude, and & the wave number.
Substituting this into the preceding equation we obtain

‘ig + ikelU =0.
dt

Thus, the problem of solving a partial differential equation
has been reduced to that of solving this ordinary differen-
tial equation. Its solution is

U (1) = U(0) e,

where U (0) is the initial value of the amplitude. Hence,
the desired harmonic solution is

u(x, t) = Re [U(0) e @-®)]. 6.7

Each wave component is, thus, advected at a constant
velocity ¢ along the x axis with no change in
amplitude.

Returning to the von Neumann method, we now look
for an analogous solution of the finite difference equation
(6.1). Into this equation we substitute a solution of the
form

u} = Re [UM g5 (6.8)
Here U ™ is the amplitude at time level n. This substitu-
tion shows that (6.8) is a solution provided that

UMD = (=) U™ 4 pUD ™2 (6.9)

An equation of this kind enables analysis of the behav-
iour of the amplitude U as n increases. To this end
we define an amplification factor |\ | by

Uyt =) yim (6.!0)

This gives
] = Ay,

For each harmonic solution (6.8) to be stable it is required
that

(U@ | =2 |U®] <8,
where B is a finite number. This gives
nln|k| <In(B/|U®|)=F,

where B’ is a new constant. Since n = /41, the necessary
condition for stability becomes

!
In Al < TB- At (6.11)

Now, suppose that we require boundedness of the solu-
tion for a finite time r. Condition (6.11) can then be
written as

In|A| <0 (dr).

If we now define
[A|=1+3,

we see, in view of the power series expansion of In (1 4- 8),
that the stability condition obtained is equivalent to

& < 0 (d1).
or
[A] <14 0(41). (6.12)

This is the von Neumann necessary condition for stability.

The von Neumann condition allows an exponential,
but no faster, growth of the solution. This, of course,
is needed to analyze cases when the true solution grows
exponentially. However, when we know that the true
solution does not grow, as in our example (6.7), it is
customary to replace (6.12) by a sufficient condition

A< L. (6.13)

This condition is much less generous than that required
by the original definition of stability. Returning to our
example, substitution of (6.10) into (6.9) gives

A= l—p + petka*, (6.14)
From this we obtain
[A|2 = 1—2p(1—p) (1—cos kdx), (6.15)

and, therefore, | —p = 0 is again found to be a sufficient
condition for stability of (6.1).
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An equation such as (6.15) gives further information
about the behaviour of the numerical solution. This can
be obtained by studying the variation of | A | with p for
various fixed values of k4x. To this end we plot the
| A ]® curves; (6.15) shows that in the present case all
of these curves are parabolas. Furthermore, recall that
the minimum resolvable wave length is 24x. Thus, the
maximum value that wave number k can take is 1/4x. We
thus plot the [A|* curves for this maximum value
k = njdx (or wave length L = 24x), and for half this
value, k = n/24x (L = 44x), and a quarter of this
value, kK = n/44x (L = 84x). The first derivative

dinl’
dp

= -2 (1-2y) (1-cos k4x),

shows that all the | A | curves have minima at p = 1/2.
This information, in addition to calculation of the ordi-
nates of (6.15) at p = 0, 1/2 and |, suffices for sketching

0 0.5 = cdt/dx

Figure 6.1 Sketches of |A|2 curves, for the scheme (6.1), and

for various values of L.

the graphs of the | A |? curves as shown in Fig. 6.1. In
general, as the wave length L increases, that is, as k
approaches zero, the amplification factor approaches
unity for any value of the parameter p.

The figure shows that within the stable region the scheme
is damping for all values p << 1. The damping increases
as the wave length decreases. Since the true solution
has a constant amplitude, this damping reveals an error
due to finite differencing. We see that this error increases
as the wave length decreases. At the shortest resolvable
wave length, L = 24x, the error may be very great
unless 4r is extremely small. It is even possible for
this wave to be completely removed after only a single
time step ! The dependence of the error on wave length,
as seen here, might have been anticipated by considering
representation of harmonics of various wave lengths by
the finite difference grid. The shortest resolvable wave,
with only two data points per wave length, is very poorly
represented ; as the wave length increases, the representa-
tion by a finite difference grid improves, and approaches
the continuous representation as the wave length tends
to infinity.

There exists a wealth of more precise definitions of
stability and convergence, as well as stability criteria.
For a further discussion of these subjects, and of the
relation between the properties of stability and conver-
gence, the interested reader is referred to the book by
Richtmyer and Morton (1967) and to the publication
by Kreiss and Oliger (1973). However, for application
of numerical methods to atmospheric models, it is more
important to discuss other problems than to refine the
stability and convergence concepts beyond the outline
given here. These numerical problems, such as phase
speed errors and computational dispersion, nonlinear
instability, effect of the space-time grid on the properties
of the numerical solution, and, also the ideas behind
and properties of the great variety of schemes that are
currently being used in atmospheric models, will be
discussed in the remaining chapters of this publication.
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TIME DIFFERENCING SCHEMES

In this chapter we consider ordinary differential equa-
tions with one dependent and one independent variable.
Although atmospheric models are essentially always
models for solving a complex set of partial differential
equations, in some formulations the numerical solution of
ordinary differential equations forms an important
part of the computational procedure. For instance in
spectral models the governing partial differential equa-
tions reduce to a set of ordinary differential equations for
the expansion coefficients as dependent variables. A set
of ordinary differential equations will also be obtained
if a Lagrangian method is used, in which the computa-
tional points move with the fiuid. But, most of all,
schemes for solving ordinary differential equations are
of interest here since they are often used without modi-
fication to construct approximations to the time deri-
vative terms in the governing partial differential equa-
tions. Knowledge of the properties of schemes for solving
ordinary differential equations will then be used in inves-
tigating the properties of more complex schemes for
solving the partial differential equations.

With that in mind, we shall here first define some of the
schemes that will be interesting to analyze. Then we
shall investigate the behaviour of numerical solutions
obtained when these schemes are used for two specific
ordinary differential equations: the oscillation (or
frequency) equation, and the friction equation. These
equations will serve as prototypes for later extension
of the results to advection, gravity-inertia wave, and
diffusion processes within the atmospheric primitive
equations.

1. Definitions of some schemes

Schemes used for the time derivative terms within the
primitive equations are relatively simple, usually of the
second and sometimes even only of the first order of
accuracy. There are several reasons for this. First,
it is a’ gencral experience that schemes constructed so
as to have a high order of accuracy are mostly not
very successful when solving partial differential equa-
tions. This is in contrast to the expericnce with ordinary
differential equations, where very accurate schemes,
such as the Runge-Kutta method, are extremely reward-
ing. There is a basic reason for this difference. With

an ordinary differential equation, the equation and a
single initial condition is all that is required for an exact
solution. Thus, the error of the numerical solution
is entirely due to the inadequacy of the scheme. With a
partial differential equation, the error of the numerical
solution is brought about both by the inadequacy of the
scheme and by insufficient information about the initial
conditions, since they are known only at discrete space
points. Thus, an increase in the accuracy of the scheme
improves only one of these two components, and the
results are not too impressive.

Another reason for not requiring a scheme of high
accuracy for approximations to the time derivative terms
is that, in order to meet a stability requirement of the
type discussed in the preceding chapter, it is usually
necessary to choose a time step significantly smaller than
that required for adequate accuracy. With the time step
usually chosen, other errors, for example in the space
differencing, are much greater than those due to the time
differencing. Thus, computational effort is better spent
in reducing these other errors, and not in increasing the
accuracy of the time differencing. This, of course, does
not mean that it is not necessary to consider carefully the
properties of various possible time differencing schemes.
Accuracy, is only one important consideration in choosing
a scheme.

To define some schemes, we consider the equation

dau =
E:f(U,;)‘ U=u) (1.n

The independent variable ¢ is here called time. We
divide the time axis into segments of equal length 4r.
We shall denote by U™ the approximate value of U at
time ndt. We assume that we know at least the first
of the values U™, U~V .. and we want to construct
a scheme for computation of an approximate value
U@+b, There are many possibilities.

A. Two level schemes. These are schemes that relate
values of the dependent variable at two time levels: n
and 7 4+ |. Only a two level scheme can be used to
advance an integration over the first time step, when
just a single initial condition is available. With such a
scheme we want to approximate the exact formula
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(n41) () (n+1) dr
gt = g +J S 1) ar.

ndt

(1.2)

We shall first list several schemes which do not use an
iterative procedure.

Al. Euler (or forward) scheme. This is the scheme

U(n+l) i U(n} + Af'ft"},

where

(1.3)
S®=f(U™, ndr).

The truncation error of this scheme is 0 (4¢). Thus, this
is a first order accurate scheme. For the integrand in
(1.2) we have here taken a constant value equal to that
at the lower boundary of the time interval. Thus, fin
(1.3) is not centered in time, and the scheme is said to
be uncentercd. In general, uncentered schemes will
be found to be of the first order of accuracy, and simple
centered schemes to be of the second order of accuracy.

A2. Backward scheme. We can also take a constant
value of f equal to that at the upper boundary of the
time interval. We then obtain

UG+ = U™y ge.fotn, (1.9
If, as here, a value of f depending on U ™*V appears
in the difference equation, the scheme is called implicit.
For an ordinary differential equation, it may be simple
to solve such a difference equation for the desired value
U@*h, But, for partial differential equations, this will
require solving a set of simultaneous equations, with one
equation for each of the grid points of the computation
region. If a value of fdepending on U'"*" does not appear
in the difference equation the scheme is called explicit.

The truncation error of (1.4) is also 0(4r).

A3. Trapezoidal scheme. If we approximate f in
(1.2) by an average of the values at the beginning and
the end of the time interval, we obtain the trapezoidal
scheme

1
U+l = [y L _ 4 (n) _ (n+1)y 1.5
2 W f e o e (1.5)
This is also an implicit scheme. Its truncation error,
however, is 0 [(41)?].

To increase the accuracy or for other reasons we can
also construct iterative schemes. Two schemes that we
will now define are constructed in the same way as (1.4)
and (1.5), except that an iterative procedure is used to
make them explicit.

A4, Matsuno (or Euler-backward) scheme. With
this scheme a step is made first using the Euler scheme ;

the value of U obtained for time level n -+ 1 is then used
for an approximation to f**", and this approximate
value f™*" * s used to make a backward step. Thus,

[Jin+ly = U(n! i df'_f‘").

gmen - ym g gy o (1.6)

where
forthx = f(Un+D* (n 4 1) A1).

This is an explicit scheme, of the first order of accuracy.

AS5. Heun scheme. Here, in much the same way, an
approximation is constructed to the trapezoidal scheme.
Thus,

Uin+tl) x . [7(m) + Ar‘f“",

. (1.7
yn+h = g 4 -;—Af {f(”) +f(n+ll )

Thus, this is also an explicit scheme. It is of the second
order of accuracy.

B. Three level schemes. Except at the first step,
one can store the value U™V, and construct schemes
taking advantage of this additional information. These
are three level schemes. They may approximate the
formula

(n+1) ar

U("+”= U(H’—l)_!_I f{(f,f} d‘, (18)

(n=1) dr
or, they can use the additional value U™~ to make a
better approximation to f in (1.2).

Bl. Leapfrog scheme. The simplest way of making
a centered evaluation of the integral in (1.8) is to take
for fa constant value equal to that at the middle of the
interval 24r. This gives the leapfrog scheme

Utnﬂ) iy Uin—l] _+_ ZAf'f{“’- (| _9}
Its truncation error is O [(47)*]. This is probably the
scheme most widely used at present in atmospheric
models. It has also been called the ““mid-point rule”, or
*“step-over” scheme.

B2. Adams-Bashforth scheme. The scheme that is
usually called the Adams-Bashforth scheme in the atmo-
spheric sciences is, in fact, a simplified version of the
original Adams-Bashforth scheme, which is of the fourth
order of accuracy. The simplified version is obtained
when fin (1.2) is approximated by a value obtained at the
centre of the interval At by a linear extrapolation using
values f™~ and f™. This gives
3 (n) | n-)
5/ > )

U(n+l)

=v"+ a4 (1.10)
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This also is a second order accurate scheme.

There are many other rather obvious possibilities.
For example, one can approximate the integral in (1.8)
using Simpson’s rule, that is, by fitting a parabola to the
values /"=, f and "+, The implicit scheme obtained
in this way is called the Milne-Simpson scheme. To
illustrate the wealth of possible alternatives we note that
in a paper by Young (1968) properties of 13 different
schemes have been studied. Furthermore, when we are
solving a more complicated partial differential equation,
or a system of such equations, time (or space-time)
differencing schemes can be constructed which are more
complex than those which can be defined using the
simple equation (1.1). Such schemes are widely used in
atmospheric models, and some of them will be described
in later chapters of this publication.

2. Properties of schemes applied to the oscillation equation

The stability and other important properties of the
time differencing schemes defined in section (1) depend
on the form of the function f(U,t). Thus, in order to
discuss these properties we have to prescribe this function.
For applications in atmospheric models it is of particular
interest to consider the case

f=ioU,
that is, the equation
&Y = tou, U =U). @.1)

Equation (2.1) we shall call the oscillation equation. The
word frequency equation is also used. We allow U to be
complex ; then (2.1) can be thought of as representing
a system of two equations. The parameter @ is real, and
is called the frequency.

It is easy to give some justification for our interest in the
equation (2.1). As an example, recall that the harmonic
component

u(x,t) = Re [U(r) e*],

is a solution of the linear wave equation

a a
3“_‘.;.5\3;:0‘ ¢ = const.,
provided that
ig + tkcU = 0.
dt

This ordinary differential equation reduces to (2.1)
if we substitute ® = —ke.

As another simple example we can consider the accel-
eration and Coriolis terms of the horizontal component
of the equation of motion of the atmosphere, that is

du dv
a =/v - ~fu.
If we define
U=u-+iv,

we can write these two equations as

du :
?— —l’fU.

This again reduces to (2.1), this time if we substitute
o= —f.

Since there are many more important types of wave
motion, we can hope that results obtained by a study
of (2.1) will be much more general. It can, indeed, be
shown (e.g. Young, 1968) that the equation (2.1) can
be obtained from a rather general linearized system of
governing equations, describing a number of types of
wave motion in the atmosphere.

The general solution of (2.1) is

U(t) = U(0) e,

or, for discrete values t = nAat,

U (ndt) = U (0) & 2.2

Thus, considering the solution in a complex plane,
its argument rotates by w4t in each time step 4t, and
there is no change in amplitude.

The properties of various schemes when applied to
(2.1) are conveniently analyzed using the von Neumann
method. This method, as we have seen, involves defining
a variable A by

gt =) ym (2.3)

We also write
lE|l|e‘“ (2.49)

Thus, the numerical solution can formally be written as

U™ = |A|* U &m0, (2.5)
We see that 0 represents the change in argument (or
phase change) of the numerical solution in each time
step.

Since we know that the amplitude of the true solution
does not change, we shall require | A | = 1 for stability.
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In accordance with this and (2.5), we shall say that a
scheme is

unstable ;, o
neutral if |A]=1.
damping <

(or dissipative)

It will also be instructive to compare the phase change
of the numerical solution per time step, 0, with that of the
true solution, wA4t. The ratio of these changes, 6/wdz,
is the relative phase change of the numerical solution.
Obviously, we can say that a scheme is

accelerating

of no effect on i i=1
phase speed wdt

decelerating

. For accuracy, therefore, it is desirable to have both the
amplification factor and the relative phase speed close
to unity. Exceptions to this are so-called “computa-
tional modes”, which, as we shall see later, can appear
as false solutions superposed on the physical solution.
These are solutions that do not approach the true solution
as the space and time steps approach zero. If such
solutions exist they will each have their own value of
the amplification factor. Since they are not an approxima-
tion to the true solution, it is desirable to have their
amplitudes as small as possible, that is, to have their
amplification factors less than unity.

We shall now discuss the properties of the schemes
that have been defined in the preceding section.

Two level schemes. The three non-iterative two level

schemes can be described by a single finite difference
equation

USHD = U™ 4 At (af ™ + Bfn+D), (2.6)

with a consistency requirement
a+pB=1.

Obviously, a = 1, p = 0 for the Euler scheme, a = 0,
B = 1 for the backward scheme,and a = 1/2, p = 1/2 for
the trapezoidal scheme.

Applied to the oscillation equation (2.6) gives

U+ = gym 4 fmAr(aU““ + B Utu-c-n). (2?)
In order to evaluate A we must solve this equation for
U™*D, Denoting, for brevity,

P = odt, (2.8)
we obtain
U(n+l) = Lt.‘&! U‘RJ.

1—iPp @2

Therefore,

(2.10)
or,

=1 P,
l__ﬂl-‘l-ﬂp (1—aBp? + ip).

Substituting for @ and B allows us to investigate the
effect of particular schemes. For the Euler scheme we have

A=1+1ip, 2.11D
for the backward scheme
1
= — I 12
A 75 1+ ip), (2.12)
and, for the trapezoidal scheme,
1 i
A=——il- Sp"+ip| (2.13)
I+zp?| 4 )

To test for stability we need to know |A|. Since
the modulus of a ratio of two complex numbers is equaf
to the ratio of their moduli, we can obtain the values ol
| A | directly from (2.10). For the Euler scheme we have

|A =@+ pY%. (2.19)

The Euler scheme is, thus, always unstable. It is interest-
ing to note that, if 4 is chosen so as to make p relatively
small, we have

|M=|+%p2+'". @.15)

This shows that | A | =1 4+ 0 [(4r)?], that is, |A | —1 is
an order of magnitude less than the maximum allowed
by the von Neumann necessary condition for stability.
However, experience shows that an indiscriminate use
of the Euler scheme for solution of the atmospheric
equations leads to amplification at a quite unacceptable
rate.

For the backward scheme we obtain

[A] =+ pH*%. (2.16)
The backward scheme is, thus, stable no matter what
value of 4¢ is chosen. Thus, it is an unconditionally
stable scheme. We can, furthermore, notice that it is
damping, and that the amount of damping increases as
the frequency ® increases. This is often considered to
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be a desirable property of a scheme. For instance, we can
think of a system in which a number of frequencies are
present at the same time ; for example, solving a system
of equations of the type (2. 1). This situation is similar to
that existing in the real atmosphere. It would appear
to be necessary to maintain the amplitudes of motions
of different frequencies in the correct ratio. However,
in numerical integrations, high frequency motions are
often excited to unrealistically large amplitudes through
errors in the initial data. It may then be desirable to
reduce the amplitudes of high frequency motions by a
selective damping in the time differencing scheme. In
other words, a scheme with frequency dependent damping
properties can be used to filter out undesirable high
frequency motions.
For the trapezoidal scheme we find
|A|=1. 2.17
The trapezoidal scheme is, thus, always neutral. The
amplitude of the numerical solution remains constant,
just as does that of the true solution. It is useful to note
that both the implicit schemes considered here were
stable no matter how large a value of A¢ was chosen.

The iterative two level schemes can also be described
by a single equation in the same way as (2.6). Thus, we
write

Uinthhs — [r(n) + d!'-f(’",
ymth = gy 4 At(uf“" + ﬂf{n-&-l)t),
a+pB=1.

(2.18)

Now @ = 0, B = 1 for the Matsuno scheme, and a = 1/2,
B = 1/2 for the Heun scheme.

Applied to the oscillation equation (2.18) gives

Ue+Ds — Um 4 joAr U™,
U"”’“ s U“‘) + I'(OAI (uu(nj + ﬂutn-!-.l)t)- (219)

Eliminating U+ * we obtain, again using (2.8),
U{H'l‘l) po— (l__BPE + lP) U(ﬂl'

Thus,
A=1-—PBp*+ip (2.20)
Substituting the appropriate values of B we now obtain
the values of A for the two schemes. Hence, for the
Matsuno scheme

A=1-p"+ ip, (2.21)

and for the Heun scheme

l=|-%p2+fp. (2.22)

To test for stability we evaluate | A |. For the Matsuno
scheme we obtain

[A) = (1=p* + pY*. (2.23)

Thus, the Matsuno scheme is stable if

lpl =<1

In other words, to achieve stability we have to choose 4t
sufficiently small so that

A <1/|o|. (2.29)
The Matsuno scheme, thus, is conditionally stable. The
higher the frequency, the more restrictive is the stability
condition.

Differentiating (2.23) we find that
dIAl _ P
dp ~ (1—p? +pH" (' 2”2)'

Hence, the amplification facto[_ of the Matsuno scheme
has a minimum for p = 1/4/2. Therefore, as pointed
out by Matsuno (1966a) when dealing with a system
with a number of frequencies we can choose a time step
so as to have 0 < p < 1/4/2 for all the frequencies
present, and then, in the same way as backward implicit
scheme, this scheme will reduce the relative amplitudes
of high frequencies. This technique has recently become
very popular for initialization of atmospheric models,
where it is used to damp the spurious high frequency
noise generated by the assimilation of the observed data.
As shown by Matsuno (1966b) higher order accuracy
schemes with similar filtering characteristics can be con-
structed.

For the Heun scheme (2.22) gives

1 2
= (I + Zp“) (2.25)
This is always greater than unity. Thus, the Heun
scheme is always unstable, like the Euler scheme.
However, instead of (2.15), for small p we now have

1

|7L[=|+§p4+"‘. (2.26)
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that is, |A]| =14 0[(40)*]. This instability is quite
weak. Experience shows that it can be tolerated when we
can choose a relatively small value of 4r. (Note that,
whenever the amplification rate is less than that allowed
by the von Neumann necessary condition, the total
amplification in a given time is reduced as the time step
is reduced.)

Fig. 2.1 summarizes the results obtained for the five
schemes considered so far. For all of these schemes the
amplification factors were found to be even functions
of p, so the amplification factor curves are shown only
for p =2 0.

y Matsuno scheme

A
2] /{' Euler scheme
J”’
)
= Heun scheme
] True solution,
trapezoidal scheme
X Backward scheme
0 | T SRS 1
0 1/4/2 1 I3
Figure 2.1 The amplification factor as a function of p = w4t for

five two level schemes and for the true solution.

It is also of interest to consider the phase change per
time step, 0, and the relative phase change per time step,
6/p. Using the notation

A= Are + I hims (2.27)
we have, using (2.4),
A
0 = arc tan %, (2.28)
Are
or 0 1 A
— = —arc tan ~im. =
= e A (2.29)

For the Euler and the backward schemes, using
(2.11) and (2.12) we obtain

8
P

arc tan p. (2.30)

1
4

Since the right-hand side is always less than unity, we
can see that these two schemes are decelerating. For
p =1 we have 8/p = /4.

In other cases the effect may not be so obvious. For
the Matsuno scheme, for example, (2.21) gives

(2.31

v l®

1 p
= —arc tan —/——.
P 1—p?

It is not obvious whether the right-hand side here is
greater or less than unity. However, the behaviour
of (2.31) for all p is of no practical interest, since we
already know that p must be chosen less than unity in
order to ensure stability, and rather small for frequencies
for which we want the integration errors to be small.
Thus, we need only consider (2.31) for small p; we
obtain

0 vad oo
’7—|+3p+ .

The Matsuno scheme, therefore, is seen to be accelerating. -
For the special value p = 1 this can be seen directly from
(2.13), since then 8/p = n/2.

Analysis of phase errors of schemes applied to the
oscillation equation is not so important as analysis of the
amplification factor. Phase errors do not affect stability ;
and when these schemes are used to solve the partial
differential equations of motion additional phase errors
due to space differencing will appear. We will then be
interested only in the total phase error, and it will be
found that the error due to space differencing is usually
dominant.

Three level schemes and computational modes. We
consider first the leapfrog scheme (1.9). Applied to the
oscillation equation it gives

e+ = =0 4 j2p4t U™, (2.32)

A problem with all three or more level schemes includ-
ing this is that they require more than one initial condition
to start the computation. From a physical standpoint
a single initial condition U'? should have been sufficient.
However, in addition to the physical initial condition,
three level schemes require a computational initial condi-
tion UM, This value cannot be calculated by a three
level scheme, and, therefore, it will usually have to be
obtained using one of the two level schemes.

According to (2.3) we also have

Uum — 3 U(n—u, U(n+11 = A2 tn-1 (2‘33)
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When these relations are substituted into (2.32) we
obtain

A—i2pA—1 =0,

a second degree equation for A. It has solutions

A = '\/I-Pz + ip,

o (2.39
Ay = —V1—p* + ip.

Thus, there are two solutions of the form U™ = A U™,
This necessarily follows from the fact that we are consider-
ing a three level scheme ; substitution of (2.33) into the
difference equation given by these schemes will always give
a second degree equation for . In general, an m level
scheme will give m— | solutions of the form U™V = ) U™,
A solution of this type corresponding to a single value
of A is called a mode.

Consider now the two values that have been obtained
for . If a solution of the form U"*Y = A U™ js to
represent an approximation to the true solution, then we
must have A — 1| as 41—+ 0. For the values (2.34), as
p = wdt -~ 0 we do have &, - I, however at the same
time A;->» —1. Solutions like that associated with A,
are usually called physical modes because we are always
solving equations describing physical processes. Solu-
tions like that associated with A, are not approximations
to the true solution, and are called computational
modes.

To clarify this situation we consider the simple case
o = 0, that is, the equation

av

dr =0,

(2.35)

with the true solution

U = const. (2.36)

The leapfrog scheme, applied to (2.35), gives

U+n — yin-n, (2.37)

For a given physical initial condition U@, we consider
two special choices of U™,

A. Suppose calculating of U™ happened to give the
true value U®. (2.37) then gives, for all n,

Uw+d — gm,

or, since p =0,
e+ — J‘-l U,

Thus, we obtain a numerical solution that is equal to the
true solution (2.36), and consists of the physical mode
only.

B. Suppose calculating U™ gives UM = —U9,
Then we obtain, for all n,

U(:nn st _U(n)‘
or
Utn+1) o )\_2 Utn}_

The numerical solution now consists entirely of the
computational mode. Hence, it would appear that a
good choice of the computational initial condition is
of vital importance for obtaining a satisfactory numerical
solution.

In general, since (2.31) is a linear equation, its solution
will be a linear combination of the two solutions

U(rlt) s 3.;' U“:‘,
LSy K FA
Therefore, we can write
U =alf U + b0 U, (2.38)

where a and b are constants. Now this has to satisfy
the physical and the computational initial condition ;
we obtain

U® =aU® +5UQ,
U® =al U + b0, U,

These equations can be solved for a U'® and b U'D, and
the results substituted into (2.38). In this way we find

m_ 1 L C) )\
U _:——'_h[xl(u 120}

(2.39)
= (U"’ = U“”]].

Therefore, the amplitudes of the physical and of the
computational modes are seen to be proportional to,
respectively,

I Um_lz Utm‘ and | Ul”—-lg U ]
These are seen to depend on U®™. If, for example, we
are able to choose U = &, U'?, the numerical solution

will consist of the physical mode only. If, on the other
hand, the choice of U is so unsuccessful as to have
UM =2 U®, the solution will consist entirely of the
computational mode.

While this analysis illustrates the importance of a
careful choice of U™, it is not always possible to calculate
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UW =2, U® so as to eliminate the computational
mode. Numerical methods are used in practice to solve
equations that cannot be solved by analytical methods,
and are more complex than the simple oscillation equa-
tion (2.1). In these cases we will not know the exact
values of A, and &,. Thus, U™ is usually computed using
one of the two level schemes. The simplest method is to
use the Euler scheme, or, a more refined procedure
could be used, for example the Heun scheme. Using
(2.39) it can be shown that the latter alternative will give
a smaller amplitude of the computational mode.

We also note that even if we did know the exact value
of A,, this would still not allow the computational mode
to be eliminated in a practical numerical calculation.
The numerical solution which we calculate is not an
exact solution of the finite difference equations, since the
arithmetical operations are performed in practice only
to a finite number of significant digits. The error produced
in this way is called round off error, though in electronic
computers results of arithmetic operations are sometimes
truncated to a given number of digits, instead of being
rounded off. With round off errors present, permanent
elimination of the computational mode is not possible
in principle, since the computational mode would appear
in the course of integration in any case even if it were
absent initially. However, it is usually found that
round off errors are of little importance in atmospheric
models, and in solving partial differential equations in
general.

Proceeding now to the stability analysis, in view of
(2.38) and our inability to eliminate the computational
mode completely, we will have to require for stability
that neither of the two amplification factors is greater
than unity. It is convenient to consider three special
cases.

Llp| <1. In (2.34) 1—p* is positive, and we obtain
[M] =[] = 1.

Thus, in this case both modes are stable and neutral.
For the phase change, using (2.28)

(2.40)

L == arc tan (ph/-l-_—-?‘),

(2.41)
6, = arc tan (—p/V' 1—p%).

It is instructive to consider the behaviour of 0, as a
function of p, especially as p-» 0. We consider first the
case p =~ 0. Since for both modes A, = |A|sin6 =p
we have 0 -20 < n. Considering the signs of A, we
find that 0 -~ 0, < m/2, and n/2 << 8, << . To illustrate
these results, the phase changes (2.41) are plotted in
Fig. 2.2. We see that, for all p,

92 = '.'t"'9|.

Specifically, as p » 0, 0, > p, while 8, > n--p. Thus,
for small 4t the physical mode is seen to approximate
the true solution, while the behaviour of the computa-
tional mode is quite different. For the case p <0, we
obtain in the same way

0, =— n—0,.
Thus, for p = 0,

0, = + n—0,. (2.42)

0, = arc tan x

x=p \/1-p*

Figure 2.2 Phase change of the physical and of the computational
mode for the leapfrog scheme.

For accuracy of the physical mode, 8, should closely
approximate the phase change of the true solution, p.
For small p (2.41), gives

1
0 =p+ P+

Thus, the leapfrog scheme is accelerating ; the accelera-
tion, though, is four times less than that of the Matsuno
scheme. It is instructive to note that schemes of different
orders of accuracy can still have the same order of leading
term in power series expansions of either the amplification
factors or the phase changes.

Differentiating (2.41); we find

o, ___1

B VT

The phase error, thus, is seen to increase sharply asp — 1,
when 8,/p - n/2.

It may be useful to illustrate the behaviour of the two
modes obtained

U“I’ o U«ln etnf1 Ut;} oy U‘g’ ein (xn-01 (2.43)

in the complex plane. For simplicity, we consider the
case B, = n/8 and assume that the imaginary part of
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the solution is equal to zero at the initial moment. The
physical mode, as seen in (2.43), rotates in the positive
sense by an angle 6, in each time step A4¢, while at the
same time the computational mode, in the case p > 0,
rotates by an angle n—8,. Therefore, the two modes can
be represented graphically as in Fig. 2.3.

Uim
4
5 b 3
2
I
0, U,
n=70
Physical mode
Uim
3 5
1
5, U
n=0
2
4

Computational mode

Figure 2.3 The physical and computational modes, for the leap-
frog scheme, when 8), = n/8 and when the imaginary
parts are zero at the initial moment, for a number of
values of n.

A detailed knowledge of the behaviour of the computa-
tional mode may be helpful in recognizing its excessive
presence in an integration. Thus, we plot the real and
imaginary parts of the computational mode as functions
of time. This can be done by using an alternative form
of (2.43),

UR = (=" UQ (cosnB, — isinnb,),

or directly from Fig. 2.3. We obtain diagrams as shown
in Fig. 2.4. Because of the factor (—1) ", both real and
imaginary parts oscillate between time steps.

Figure 2.4 Real and imaginary parts of the computational mode,
for the leapfrog scheme, for the same case as shown in
the preceding figure, as functions of time.

II. |p| = 1. This is a limiting case of the solutions
considered for |p| < l. (2.34) shows that the values
of A are now equal,

ll = }.3 = .E‘D.
Therefore

|M ] =|da| = 1. (2.44)

Thus, both modes are still neutral. Since neither of them
has a real part, we obtain, for p = + 1,

8,=6,==% % (2.45)
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Therefore, the two modes can be written in the form
. N
U[n) — U(l}) etmi. (2.46)

In a complex plane, they rotate by an angle of + n/2 in
each time step, while the true solution rotates by an angle
of &£ | only. The phase error, thus, is large.

L. |p]|> 1. Both values of A in (2.34) still have
imaginary parts only, so that

M=i(p+Vpi-),
\=i(p—Vp-),
where the expressions in parentheses are real. Therefore,

M| =|p+VpP—1],

S (2.47)
INa|=[p—Vp—1|.
Thus, for p=> 1 we have A |> I, and for p < —1
| Az| > 1. Therefore, for [p|> 1 the leapfrog scheme
is unstable. The instability increases sharply as |p|
increases beyond |; we can see this, for example for
p > |, because

which is unbounded as p —+ 1.

Since the two values of A still have no real parts, we
again have

o,=0,=+1. (2.48)

The two modes for p @ |, can thus be written as

um = lp 1 '\/Pg"l In U‘T?*‘”g.
— (2.49)
Ut:l e |“p w2 ‘\/pz——l |n U‘g’e*”‘;.

In the complex plane, both modes again rotate by an
angle of | m/2 in each time step. However, this time
the amplitude of one of the modes increases, and that
of the other decreases with time. The real part of the
unstable mode can, for instance, be represented as a
function of time by a graph like that in Fig. 2.5. Because
of (2.48) the period of the unstable oscillation is always
44t. This can be used to diagnose the instability : if
the results appear unsatisfactory, it is a good idea to

check for the presence of growing oscillations of that
period.

Ure

L ]

The real part of the unstable mode, for the leapfrog
scheme, in case when |A| = 1.1 and when the
imaginary part is zero at the initial moment, as a
function of time.

Figure 2.5

To sum up, advantages of the leapfrog scheme are
that it is a very simple scheme, of second order accuracy,
and neutral within the stability range |odt|<1. A
disadvantage of the leapfrog scheme is the presence of a
neutral computational mode. With nonlinear equations
there is a tendency for a slow amplification of the compu-
tational mode. An example of this growth can be seen,
for example, in one figure of a paper by Lilly (1965).
The usual method used for suppressing this instability
is the occasional insertion of a step made by a two level
scheme, which eliminates the computational mode.
A multi-level scheme that damps the computational mode
could also be used for this purpose.

When solving the system of gravity wave equations,
as will be shown in Chapter [V, it is possible to construct
grids and/or finite difference schemes which have essen-
tially the same properties as the leapfrog scheme, but
in which the computational mode is absent. These
methods calculate the physical mode only, and at the
same time require only one half of the computation
time needed for the regular leapfrog scheme as described
here.

We consider, finally, stability and other properties

of the Adams-Bashforth scheme (1.10). Applied to
the oscillation equation it gives
vt =v® + o (2 U™ - 20" @2.s50)
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Substituting the relations (2.33) we find

L
) l+;2p—0.

5 (1 $ig
We have, of course, again obtained a second degree
equation for A. It has the solutions

1 3 L8 '

l|=~2-(1+l3p+ l—‘—“pz-f-!p,
(2.51)

I 5 ]/ 9 )

122—2-(1-!-:5,0—— I—Ip2+:p.

Thus, as p-+ 0 4, - |, while &, > 0. We see that the
solution associated with X, again represents a physical
mode, and that associated with X, a computational
mode. However, while for the leapfrog scheme the
computational mode was found to be neutral, here it is
scen to be damped. This is a very useful property of the
Adams-Bashforth scheme as the computational mode
cannot cause inconveniences.

The exact analysis of the amplification factors here is
more difficult because of the presence of square roots in
(2.51). However, since for reasons of accuracy we
have to choose a relatively small value of p in any case,
it will suffice to consider amplification factors for small
values of p only. The power series expansion of (2.51)
then gives

1 | ]
A= +‘_..__2 e T SR | e
( =1+1ip 2‘0 +r4p 8p+ 5

IR N T
A, :2p+2p :4p+8p

Now, after rearranging the terms these series can be
written as

1 1 . 1
)_I:,(l__z_pz_.gpll__...Jq.,(p+_4.p3+...).
I LTS e o SR L S W S

& 2 8 2 4 f
which can be used to obtain the amplification factors
] Vi
|A| = (1 + 5p4 + ) ,
. (2.52)
I 5 4
b

The higher order terms have been omitted. A final
expansion gives

M| =140+,

2.53
|12|=‘12-p+~--. ( ;

Expressions (2.52) and/or (2.53) show that the physical
mode of the Adams-Bashforth scheme is always unstable.
However, as for the Heun scheme, the amplification is
only by a fourth order term, and it can be tolerated when
a sufficiently small value of At is chosen. Note that the
amplification given by (2.53), is twice that given by (2.26)
for the Heun scheme. Since the amplification is propor-
tional to (41)*, however, a small reduction in time step
would compensate for that difference. Thus, the Adams-
Bashforth scheme, with only one evaluation of the
right hand side per time step, can still be considered
much more economical. It has been fairly frequently
used in meteorological numerical studies. For example, it
is being used by Deardorfl in his numerical simulations
of the planetary boundary layer (e.g. Deardorff, 1974).

Analyses of the properties of some other schemes,
applied to the oscillation equation, can be found in papers
by Lilly (1965), Kurihara (1965) and Young (1968).
In practice the choice of a scheme will depend not only
on the properties considered here, but also on some
practical considerations. For example, we might expect
that the three level schemes, since they use more informa-
tion, would generally give better results than the two
level schemes. Our findings agree with that conjecture ;
for example, for second order accuracy the explicit
three level schemes required only one evaluation of the
right hand side per time step, while the two level schemes
required two evaluations. As another example, if we
want to damp high frequency motions with three level
schemes we can linearly extrapolate the derivative beyond
the centre of the interval (ndt, (n + 1) 4t), and thus
obtain a scheme that will perform such a damping in a
more selective and more economical way than the Mat-
suno scheme (Mesinger, 1971). However, three level
schemes generally require more core storage space in the
computer than two level schemes and this may affect our
our decision.

3. Properties of schemes applied to the friction equation

We shall now consider the properties of schemes when
applied to the equation

dUu

& U=ult, x>0. (3.1)

= —xU;

We shall call this equation the friction equation.

Again it is easy to justify our interest in this equation.
For example, if we define U = u 4 iv, it describes the
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effect of friction proportional to the velocity vector, as
is often assumed for motions near the ground. As
another example, note that when seeking a solution of the
heat transfer, or Fick’s diffusion equation

@—cazut 0
ax - Saa' 92

in the form of a single harmonic component
u(x,1) = Re [(U (1) e*],

we obtain

dU 2
I——O’k U.

This is equivalent to (3.1) if we substitute x = gk?.
The general solution of (3.1) is

U@)=U(0)e™. 3.2)
Thus, both the real and the imaginary part decrease
exponentially with time.

The properties of schemes applied to (3.1) will again be
analyzed using the von Neumann method. As in the
previous section, we consider first the non-iterative two
level scheme (2.6). Applied to the friction equation,
(2.6) gives

Un+l) — U“-—KAI({!U“" + Butrnn)_ (33)
Writing
K = x4t, (3.4)
we obtain, rearranging the terms in (3.3),
(n+1) _1—akK _ (n)
T1+BK 3-3)
For the Euler scheme a = 1 and B = 0; thus, (3.5)
shows that the Euler scheme is now stable if | 1 —K | < I,
that is, if
0<K<2. (3.6)

Thus we sec that the stability criteria of particular
schemes do not have to be the same when they are applied
to different cquations. In the case of (3.6), one will
normally be more demanding in the choice of 4. For

example, we will want K <7 1, to prevent the solution
(3.5) oscillating from time step to time step.
For the backward scheme a =0 and B=1; it is

always stable if K> 0. The solution does not oscillate
in sign.

For the trapezoidal scheme a = 1/2 and B = 1/2; the
scheme is again always stable for K > 0. The solution
does not oscillate if K < 2.

Considering the iterative two level scheme (2.18) we
obtain

U+ = (1—K+BK?) U™, 3.7)

Therefore, both the Matsuno and the Heun scheme are
stable for sufficiently small values of K.

It is instructive to consider in some detail the behaviour
of the numerical solution obtained using the leapfrog
scheme. Applied to (3.1) it gives

U@+ — gn=-D_2 f¢. U™ (3.8)
The equation for the amplification factor is
A+ 2Kh—1 =0,
giving the solutions
M =—K+ Vm,
(3.9

ly_:‘_K_' v1+K2.

As K-+ 0 A, — 1, while A;—> —1; thus, the solution
associated with A, again represents the physical mode,
and that associated with A, the computational mode.
For K > 0, that is, for the normal case of a forward
integration in time, we have A, < —1; hence, the compu-
tational mode is always unstable. It changes sign from
time step to time step, and its magnitude increases.
As before, we cannot hope to eliminate the computa-
tional mode completely. This amplification is not
negligible, and the leapfrog scheme is therefore not
suitable for numerical integration of the friction equation.

A simple example can be given to illustrate the in-
stability of the leapfrog scheme. Let U have only a real
part, and suppose we have set U’ = U'® as shown
in Fig. 3.1. Furthermore, let the dashed curve in the
figure represent the true solution satisfying the given
initial condition U®. Knowing U@, U™ and the true
solution it is possible to construct a graph of the numerical
solution, using the fact that dU/dt = —xU is equal to the
slope of the line tangent to the true solution at the appro-
priate value of U. In this way we obtain the numerical
solution shown by the full line. In this method, the deri-
vative is calculated as a function of the current value
of U™, and the increment due to this derivative is added
to the preceding value. This is seen to result in an
unbounded growth of the difference between consecutive
values of U'™, even when this difference is equal to zero
initially.
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Figure 3.1

An example illustrating the instability of the leapfrog
scheme applied to the friction equation. AC is con-
structed to be parallel to the tangent T.

Finally, for the Adams-Bashforth scheme we obtain

l=%(l-—~3—K + VI-K+Z; xz). (3.10)

2

The Adams-Bashforth scheme, thus, is stable for suffi-
ciently small values of XK. The computational mode is
damped.

4. A combination of schemes

A natural question to ask at this point is what can we
do if, for example, the equation contains both the oscilla-
tion and the friction term, that is

aa = iwlU — xU.

= @.1)

Here we might like to use the leapfrog scheme because
of the oscillation term iU, but we know that it cannot
be used for the friction term —xU. In this and similar
situations we can use different schemes for the different
terms ; for example, we might use the leapfrog scheme
for the oscillation term and the forward scheme for the
friction term. We then obtain

Um+D — U™ 4 241 (ioU™ —xU®™-D),

Other combinations, of course, are also possible.
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THE ADVECTION EQUATION

We now consider differential equations with one
dependent and two or three independent variables, that
is, partial differential equations. More specifically, we
shall consider various simplified forms of the advection
equation, describing advection of a dependent variable.
This is considered in practice to be the most important
part of the atmospheric governing equations.

We have already discussed the one-dimensional linear
advection equation to some extent in the introductory
chapter. We shall organize the analysis here so as first
to continue considering problems associated with the
simplest one-dimensional linear form of the advection
equation, and then to proceed to problems introduced
by more complex forms of the advection equation.

1. Schemes with centered second-order space differencing

We shall first consider the equation

(r.n

¢ = const.

Here u = u (x,t) is a function of two independent varia-
bles : the independent variable x will represent a space
variable, and, thus, (1.1) will be called the one-dimen-
sional linear advection equation. As seen earlier, its
general solution is

u=f(x—cr), (1.2)

where f is an arbitrary function. The name *‘advection
equation’ was suggested by Phillips (1960).

One of the finite difference schemes for (1.1) is the
forward and upstream scheme, which has been shown
excessively damping in Chapter I.

If the space derivative in (1.1) is approximated by a
centered finite difference quotient using values at the
two nearest points, we obtain for the time derivative

Uy — Uiy

24x

S = (1.3)
The subscript here, as before, denotes the distance from
the origin in space increments; that is, x = jdx. A
number of schemes for the numerical solution of (1.1)
can now be constructed because we can approximate the
time derivative in (1.3) by one of the methods studied

in the preceding chapter. For example, when the time
derivative is approximated using the leapfrog scheme,
we obtain

un+l un—l un u"
{' e g' itz f+l" f—l, ]4
241 ¢~ 24x (.4

as one of many possible consistent schemes for the
numerical solution of (1.1).

The properties of schemes constructed in this way can
be inferred from the known properties of time differencing
schemes applied to the oscillation equation. To see this,
we substitute into (1.3) a tentative solution in form of
the single harmonic component

u; = Re [U (1) e™7]. (1.5
After some rearrangement, this gives
dUu . &
e (— 7% Sin kdx) U. (1.6)
If we denote
®=—-=sink4 a.m
= Ax 1 X, i

this is equivalent to the oscillation equation of the previous
chapter. Now, if we approximate (1.6) using one of the
time differencing schemes studied in that chapter, the same
finite difference equation is obtained as when we apply
that scheme to (1.3) and then substitute the wave solution
(1.5). Hence, properties of finite difference schemes
derived from (1.3) can be inferred from the results of
Section 2 of Chapter 1I, where the frequency ® is
given by (1.7).

As an example, if (1.6) is approximated using the
leapfrog scheme, we obtain

Ut = Y o, (—cj—; sin kdx) u™ (1.8

Using the notation of chapter Il, we write

(1.9)

.
pP= ch sin kdx.
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We obtain the same finite difference equation (1.8) by
first applying the leapfrog scheme to (1.3) giving (1.4) and
then substituting (1.5) into (1.4). Thus, properties of
(1.4) can be inferred from (1.7) and from the known
properties of the leapfrog scheme applied to the oscillation
equation.

Let us look at some of conclusions obtained in
this way. For stability of the leapfrog scheme it was
required that the condition |p| = | be satisfied for all
values of ® occuring. Thus, we have to satisfy

At
C;i; sin kAx,( |

for any admissible k. Since |sin k4x | does reach the
maximum value of unity in the admissible range of k,
we obtain the stability condition

At
iclE‘CI_ (1.10)

This criterion, obtained already in Chapter I, shows
that stability cannot simply be achieved by reduction
of the time and space increments. Rather, it is necessary
to reduce the ratio of these increments 4t/4x to obtain
stability. The condition (1. 10) was first found by Courant,
Friedrichs and Lewy (1928), and, therefore, is usually
referred to as the Courant-Friedrichs-Lewy, or CFL,
stability criterion.

It is instructive to note that the maximum value of
[P |- that is, the minimum stability, is associated with
the wave with k4x = x/2. This is the component with
wave length 44x, twice the shortest resolvable wave
length 24x.

We can also use other results of the previous analysis.
There are two solutions for U™, the physical and the
computational mode

U =200, UP=7UY. (r.an
A, and A, are given here by Eqs. (2.34) of Chapter I1.
In the stable case, we have, for p 2 0,
Ayooe 0 =arc tan (p/V1 P
(1.12)
Ao ‘,tun [1}] S m_

Using (1.5), it is seen that the approximation u} also

has a physical and a computational mode. For the
physical mode
g 0
' = Re (U@ A UB gm0 (13

For the computational mode, on the other hand, we
obtain

(©0) ik (jdx = £ par)

u; = Re | (= 1)" U, kat (1.14)

These expressions can be compared with the true solution
of (1.1) in the form of a single harmonic component,
as given in chapter I,

u(x,t) = Re [U(0) ™=, (1.15)
We find that the phase speed of the physical mode, ¢,
is equal to —8/k4t, and the phase speed of the computa-
tional mode, c,, considering the even time steps only, is
equal to 8/kdt. Eq. (1.12), shows that as 41—+ 06 — p,
and (1.9) shows that as 4x-» 0 p— —ckdt. Thus, as
dx, 4t -+ 0 ¢, -> ¢, that is, the phase speed of the physical
mode approaches the phase speed of the true solution,
while at the same time ¢; » —c. In addition, the compu-
tational mode changes sign at all grid points from time
step to time step, because of the factor (—1)" in (1.14).

Now let us use another scheme from chapter II to
approximate the time derivative in (1.3), the Matsuno
scheme. First the approximate values ;" ** are com-
puted using the forward scheme, that is,

(n+1)° n n n
il il [ SRR - o e e ¥

At 24x (1-16)

Then, these approximate values are used in the backward
scheme, that is

n+1 n
i —u

u[””- u(n+l)‘
TR 5 B ol
a0 € 7 Ax H-10
It is instructive to eliminate the approximate values
u™*V* from this equation, by substituting values given
by (1.16), with the subscript j replaced by j+1, and

then by j—!. In this way we obtain
l“rs+l un un un
J ./ Vi N b |
ar “2ax T

n n n (1.18)
Ujsa — 2 +Uj-2
(24x)7

Without the last term. this represents the finite difference
equation obtained when the forward scheme is used for
the time derivative in (1.3). The third term approaches
zero as Ax, At -~ 0, and (1.18) is therefore also a con-
sistent scheme for the advection equation. On the other
hand. for a fixed 4t this term approaches c¢*4t (J*u/Jx®)
as 4x » 0. It is therefore of the same form as a finite
difference approximation to a Fick’s diffusion term,

+ ¢



24 THE ADVECTION EQUATION

and it has 2 damping effect. This damping effect, how-
ever, is dependent on the wave length. As the third
term is calculated over an interval of 44x, the maximum
damping occurs for a wave with wave length of 44x.
There is no damping of the shortest resolvable wave with
wave length 24x. Even if a damping effect were desir-
able when solving the advection equation, we would not
want this particular dependence on wave length. Thus,
the Matsuno scheme does not appear suitable for solving
the advection equation.

It is convenient to include here one more example of
the use of the emergy method for testing stability. In
addition to being applicable also to nonlinear equations,
it can be used to study the effect of boundary conditions
on stability. We will use the energy method here to test
the stability of a group of schemes that can be used for
solving (1.3).

A fairly wide class of schemes for solving (1.3) can
be written as

1 . .
Yo =gk (uj) — i), (1.19)

where B = cdt/dx, (1.20)

and ; is a linear function of a number of values u;.

For example, to obtain the non-iterative two level schemes
we write

U = auj + Puj . (1.21)

For the iterative two level schemes write

u = u;_%pfu;’ﬂ —ul ). (1.22)
Finally, for the Adams-Bashforth scheme
. 3 n 1 n=1
uj-ziu}-_zuj p (1.23)

Here we shall analyze the stability of the non-iterative
two level schemes. It is convenient first to multiply

(1.19) by u; and sum for all j; we obtain

. n+1 — 1 of & _ e
Z uy =) _-Epzuj W, —ur,).
J J

The right hand side vanishes if cyclic boundary conditions
are assumed ; we then have

2!{; {H:+l -—_ !lfj =0.

Adding this to the relation gives
1 n+l 2 n\2 - l n+l1 n n+1 n
3 u; —lu| | = 2 u  tullu —u
J J

Substituting (1.21), and eliminating B using B = 1—a,
we obtain, after some rearrangement

-4 T

Thus, if a > 1/2 we have anunstable sche me;if a = 1/2
a stable and neutral scheme, and, if @ <<1/2a stable and
damping scheme, which makes the total *“‘energy”

2
u}'“— u;') .(1.24)

1
Z:z(ur}')z monotonically decrease with time.
1

Finally in this section, we shall analyze a scheme that
was proposed by Lax and Wendroff (1960) and is thus
called the Lax-Wendroff scheme, or, more specifically,
the two-step Lax-Wendroff scheme. In contrast with the
schemes discussed so far, the Lax-Wendroff scheme
cannot be constructed by an independent choice of finite
difference approximations to the space and to the time
derivative of the advection equation. To describe the
procedure, we use the stencil shown in Fig. 1.1. First,

t
1
n -+
2
n_3% O O X
; 1 I
—1  j=: j  j¥= j+1
J f=g & I¥z J+F
Figure 1.1 The space-time stencil used for the construction of the

Lax-Wendroff scheme.

provisional values are calculated at the centres of the two
rectangular meshes of this stencil, for points denoted
by x signs. This is done using centered space and for-
ward time differencing, taking for uj,, and uj_,, arith-
metic averages of the values w; at the two nearest grid
points. Therefore,
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n+Y, n n n
wiehy — i+ uj) {,“;H—“f
] =
E‘" Ax
| (1.25)
n+ n
uj_yf’—-é-‘u;—u;‘ﬂ_ u —
1 - ax
=t
3 4

Using these provisional values another step is made,
centered in both space and time ; thus

n+1 n n+' n+'
uj — U .,____cuf'i'l"}_‘uj'-'ﬁ (l 26)
At dx ’ ’

Substitution of the provisional values from (1.25) into
this equation gives

l‘.J'|+! un H" u"
J ke ) s g S+ —Hi—
at 7 A (.27)

U 2. @rsy—2u %6
ol Y+l J =1
+ 5 e VL ;

It is interesting to note that this finite difference equa-
tion is very similar to (1.18), that is, to the scheme
obtained using simple centered space differencing and the
Matsuno time differencing. The only difference is in the
last term. This again approaches zero as dx, 4t 0.
However, if 4x - 0 with 4r fixed, it now approaches
Y2¢® At (9%u[Ix?). Thus, we see that it is again equivalent
in form to a finite difference approximation to the
Fickian diffusion term, but with a coefficient of half the
size given by (1.18). Furthermore, this term is now
calculated over an interval of 24x, and its damping effect
will be a maximum at that wave length. This sort of
dependence on wave length is often considered desirable
for damping in a finite difference scheme. This is because,
as we will see later, there are serious problems with
finite difference calculations for small wave lengths,
especially around 24x. It is often possible to alleviate
these problems by using a dissipative scheme, which damps
the two-grid-interval waves preferentially.

While (1.18) was of the first order of accuracy in time,
(1.27) has truncation error 0 [(4x)?] + 0 [(4¢)?]; thus,
it is of second order accuracy in both space and time.

To test the stability of the Lax-Wendroff scheme, we
substitute

uj = Re [U™ ¢'*/47] (1.28)
into (1.27). This gives

U™ = [1 -+ p? (cos kdx— ) —ip sin kdx] U™, (1.29)

Therefore
A =1+ p%(cos kdx—1) — ipsin kdx. (1.30)
Since
cos kdx —1=—2sin’ "i?,
sin k4dx = 2 sin -k‘;xcos lﬁi‘
2 2
we finally obtain
4 A
nf=l—stt-PGat 225, aan

2

The expression within the bracket is a sum of two squares
and never negative. Thus, the Lax-Wendroff scheme
is stable for 1—p? = 0, or, for

At
lel T <L

This is again the Courant-Friedrichs-Lewy stability
criterion (1.10). The scheme is damping for |c|dt/
fd4x <1.

It is instructive to analyze in some detail the dependence
of the damping wave length and on p. For the shortest
resolvable wave length of 24x we have kdx = =, and,
therefore,

|A] = (1—4p®+ 4p9)s = | 1-2u2].  (1.32)

For waves of twice the wave length, 44x, kdx = n/2,
and

|A] = (—p2 + uy'e. (1.33)

In general, since

2y . 4 kdx
d|1|:_ 4p(l—2p)sm 5 -
dp {l~4uzll—u2)sin4 ;%f l

all the | A | curves have minima at p = 1/4/2. Substitut-
ing this value of p into (1.31) we find that these minimum
values of the amplification factor are equal to

( in' @5)% (1.34)

1—sin 2

Thus, as the wave length increases from the minimum
value of 24x this minimum value of | A | monotonically
increases from zero and approaches unity as the wave
length leads to infinity.
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The amplification factors for wave lengths of 24x
and 44x, as calculated in (1.32) and (1.33), are shown
in Fig. 1.2. The amount of damping is seen to be gener-
ally quite large for shorter wave lengths, especially for the
wave length 24x. The amount of damping also depends
on the time step and the advection velocity. This is
a disadvantage of the Lax-Wendroff scheme because
there is no reason why the amount of damping should
depend on these quantities and it is either impractical
or impossible to control the damping by changing them.
For example, for small values of p expansion of (1.31)
gives
kdx
= + o,
showing that for a given amount of time (a fixed value of
ndt) the total damping will be approximately propor-
tional to 4s. However, we wish to choose 4t to give
the best accuracy and stability properties, not to give
the optimal amount of damping.

A= 1— 2} sin’

(A

0.5

0 0.5

Figure 1.2 Amplification factor of the Lax-Wendroff scheme, as
a function of p - cdt/dx, for the wave lengths 24x
and 44x.

The Lax-Wendroff scheme has been fairly widely used
in atmospheric models, due to a recommendation
by Richtmyer (1963), and its reasonably good behaviour.
It is second order accurate, explicit, not unconditionally
unstable, and since it is a two levels scheme there is no
computational mode. None of the schemes obtained by
combining centered space differencing with one of the
seven time differencing schemes studied in chapter Il
has all of these advantages. The dissipation of the Lax-
Wendroff scheme will not be harmful if its total effect is

negligible compared with the physical dissipation, and
it can also be useful for controlling the shortest waves.
If the physical dissipation is very small or non-existent,
it is better to use a neutral scheme.

One should point out here that we can change the time
differencing scheme intermittedly during an integration,
so as to get the required amount of a particular effect.
For example, in the general circulation model developed
at the National Center for Atmospheric Research,
Boulder, Colo., the Lax-Wendroff scheme is used because
of its damping effect on the shortest waves. However,
to keep the amount of damping small, it is used only once
in every hundred steps, the rest are made using a neutral
leapfrog scheme (Kasahara, 1969). On the other hand,
in the British operational model (e.g. Gadd, 1974b)
the Lax-Wendroff scheme is used every time step, with the
authors of the model making no mention of any excessive
damping due to the scheme for the purposes of that
model.

2. Computational dispersion

As we have seen, the linear advection equation

au+ca—u=0;c=const,

2 Ew 2.1

has a solution in the form of a single harmonic component

u(x,t) = Re[U (1) e*7], 2.2)
provided that
L + tkcU = 0. (2.3)
dt

In this oscillation equation kc is equal to the frequency v,
and ¢ = v/k is the phase speed of the waves. It is seen
that waves of all wave lengths are propagated with the
same phase speed, that is, the function u (x, 1) is advected
with no change in shape at a constant velocity c along the x
axis. There is no dispersion.

Now consider the equation

du; Ujy| — Uj
e A+l — %=1 _ . 4
ar + ¢ 3dx 0 (2.9

that is obtained by approximating the space derivative
in (2.1) by a centered difference quotient. The equation
(2.4) is neither a differential nor a difference equation,
but a hybrid of these two. An equation of this type can
be called a differential-difference equation, or a semi-
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discrete equation. The finite difference equations obtained
when the time derivative in (2.4) is approximated using a
consistent time differencing scheme will approach (2.4)
as the time step approaches zero. Thus, for small 4¢
(2.4) represents an approximation to these finite difference
equations. Since the time derivative has retained its
differential form, any error in (2.4) is- due to the space
differencing.

For this reason, equations of this type are used to study
the effect of particular space difference approximations
on the properties of the numerical solution.

Recall that (2.4) has a solution in the form of a single
harmonic component

u; (1) = Re [U (1) &%), (2.5
provided that
dau . sin kdx| .. _
;{-+dc (c——-——-kAx )U—O- (2.6)

We have now written this so that it can conveniently be
compared with (2.3). Instead of the constant phase
speed ¢, we see that waves now propagate with the phase
speed

- sin kdx

B 2.7
This phase speed is a function of the wave number k.
Thus, the finite differencing in space causes a dispersion
of the waves; we shall call this effect computational
dispersion. As kdx increases from zero, the phase speed c*
monotonically decreases from ¢, and becomes zero for
the shortest resolvable wave length 24x, when kdx = =.
Thus, all waves propagate at a speed that is less than the
true phase speed ¢, with this decelerating effect increasing
as the wave length decreases. The two-grid-interval
wave is stationary.

The reason for the two-grid-interval wave being sta-
tionary is obvious when we look at the plot of that wave,
shown in Fig. 2.1. For this wave u,, -= 4, at all grid

. : Ju,
points, and (2.4) gives a zero value for - )}f.
i

We have encountered two effects here. Firstly, the
advection speed is less than the true advection speed.
The consequence of this error is a general retardation of
the advection process. Secondly, the advection speed
changes with wave number; this false dispersion is
particularly serious for the shortest waves.

Hy
" — - j
0 2 4
Figure 2.1 A plot of the “two-grid-interval' wave, with a wave

length of 24x.

If the pattern that is being advected represents a super-
position of more than one wave, this false dispersion
will result in a deformation of that pattern. It is especially
small-scale patterns in the atmosphere, e.g. fronts,
shear lines, etc., that represent a superposition of many
waves, including a significant proportion of the shortest
waves. For this reason, in numerical forecasting, such
patterns, if present in the initial fields, are fairly rapidly
deformed, until they aquire a form which is less sharp
than in the beginning. Since such small-scale features
are of particular importance in weather processes,
the effect of computational dispersion deserves very
careful consideration.

We now turn our attention to the group velocity. In the
case of the linear equation (2. 1) we obtain for the group
velocity ¢,

_ d(ke)
YT Ik

= (2.8)

Thus, the group velocity is constant and equal to the
phase speed ¢. With the differential-difference equation
(2.4), however, (2.7) gives for the group velocity c,

c; = d:;: )= ¢ cos kdx.

2.9)

Thus, as kdx, increases from zero, the group velocity .
decreases monotonically from ¢,, and becomes equal to
—c¢, for the shortest resolvable wave length of 24x.

These results are summarized in Fig. 2.2. For the
exaci advection equation (2.1) both individual waves
and wave packets, that is, places where superposition
of waves results in a maximum amplitude of a group of
neighbouring wave numbers, propagate at the same con-
stant velocity ¢ = c,. Introduction of the centered space
finite difference quotient in (2.4) both makes the phase
speed and the group velocity decrease as the wave number
increases. The error is particularly great for the shortest
resolvable wave lengths ; waves with wave lengths less
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and, after dividing equation (2.4) by c/24x, to write
it in the form

Ziu(r)—u ('r) —u. (7).

dt J+1 2.12)
This can be recognized as the recurrence formula of the
Bessel function of the first kind of order j, J; (1), (e.g.
Courant and Hilbert, 1953, p. 488). In other words,

uy (1) = Jy (1)

is a solution of (2.12). Several of these functions, of the
lowest order, are shown in Fig. 2.4. The figure illustrates
more of these functions than indicated, since, for any j,

(2.13)

J__j = (— 1)" Jj.

Note, furthermore, that in (2,12) the subscript j can
take any integer value, since the location of the grid
point for which we choose j = 0 is arbitrary. Thus, a
solution that is more general than (2.13) is

uj' (T) = Jj-—-p (T)|

Figure 2.4 The Bessel functions Jy (1), J) (1) and Ja (7).

where p is an arbitrary integer. Since we are solving a
linear equation, a still more general solution is a linear
combination of all these solutions, that is

(1) = 2 a

p=-oe

J;., (1), (2.14)
where a, are arbitrary constants. Now, for T = 0 all of
the functions Jy are equal to zero, except J,, for which
Jo(0) = 1. Hence, substituting T =0 into (2.14) we
obtain

u; (0) = ay, (2.15)
Therefore the constants in (2.14) can be chosen so as to
satisfy arbitrary initial conditions u; = u;(0). Since it
can satisfy arbitrary initial conditions, (2.14) is seen to
represent the general solution of (2.12), or (2.4).

29

It is instructive to look in some detail at the solution
satisfying the initial conditions
1 for j=0
u; (0) =
0 for j=0,

(2.16)

the simplest solution of the form (2.13), for different
values of the non-dimensional time. At the initial
moment the function u; consists of a single pulse-like
disturbance, centered at the point j = 0, as shown in the
upper diagram of Fig. 2.5. We note that, because of
(2.12), duy/d is then equal to zero at all points except at
Jj = —1 and j = 1, where it is equal to —1/2 and 1/2,
respectively.

Thus, at the initial moment the disturbance propagates
at the same rate in the directions of both the positive
and the negative x axis. Further propagation of the dis-
turbance according to (2.13) can be followed using
Fig. 2.4, or, more accurately, using some tables of Bessel
functions. Solutions obtained in this way for T = 5 and
t = 10 are shown in the middle and lower diagrams of
Fig. 2.5, respectively.

Figure 2.5 The analytic solution of (2.4), for the initial conditions
shown in the uppermost of the three diagrams, for
two subsequent values of the non-dimensional time t
(Matsuno, 1966c).
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The three diagrams present an example of the computa-
tional dispersion of the second-order centered space
differencing. We note that if we expand a single pulse-
like disturbance as a cosine Fourier integral

o0

u (x) =[ a (k) cos kx dk,
0

o0

alk)= i—f u (x) cos kx dx,
0

and a (k) is calculated numerically using the grid point
values only, we obtain a constant value

a (k)= de.
n

Therefore, all the harmonic components have equal
amplitude. By analogy with the light spectrum, such a
function is called white noise if it does not appear for
physical reasons. Its Fourier components are advected
with different phase speeds, as summarized in Fig. 2.2,
bringing about a dispersion of the disturbance. With the
non-dimensional time chosen here we see from (2.12)
that the physical advection velocity should keep the pulse
located at the point j = 1. Because of the space difference
approximation, however, all the phase speeds are less
than the physical advection velocity. The main distur-
bance, as seen in Fig. 2.5, is advected at a speed only
slightly less than the physical one ; obviously it mostly
consists of the longer wave components, which have an
advection speed not much different from the physical
advection velocity. However, it is seen to be diffusing
away with time, which isagain a result of the dispersion.
We also observe propagation of a group of short waves
in the direction opposite to that of the physical advection.
Since the appearance of these waves contradicts the
physical properties of the advection equation, such waves
are called parasitic waves.

The solution of the differential-difference equation is,
obviously, quite unsatisfactory as an approximation to
the true solution. However, this example, with the initial
disturbance located at one point only, is completely
unsuitable for a good solution by a difference approxima-
tion. This is exactly the reason why it provides an in-
structive illustration of the difficulties involved.

Analytic solutions for a more gencral case, when a
centered difference approximation is made to the time
derivative also have been considered by Egger (1971).

3. Schemes with uncentered space differencing

The space derivative in (2.1) can also be approximated
using uncentered differencing. Still using values at
two points for this approximation it is attractive for

physical reasons to have one of these points as the
central point and the second located on the side from
which the fluid is being advected toward the centre.
Therefore we approximate (2.1) by

é‘r*f+cli‘:9:-]=0, for ¢ > 0, (3.1a)
at Ax
K MRIZW G g o, (B

at Ax

These equations are again differential-difference equa-
tions. (3.la) employs the backward and (3.1b) the for-
ward difference quotient for the approximation to the
space derivative. However, in both cases the differences
are calculated on the side from which the advection
velocity reaches the centre ; hence, these differences are
called upstream differences. Calculated on the opposite
side the differences would be called downstream differ-
ences.

Egs. (3.1) can be used to construct schemes for the
advection equation, by approximating the time derivative
by one of the many possible consistent methods. The
resulting schemes will only be of the first order of accuracy.
However, they have a particular advantage over centered
schemes in space when applied to the advection of a
disturbance similar to the one considered in the preceding
section. This is that, with upstream differences, a dis-
turbance cannot propagate in the direction opposite to
the physical advection. Thus, no parasitic waves will
contaminate the numerical solution.

If, specifically, a forward difference is used for the time
derivative in (3.1), we obtain, for ¢ > 0,

n+1 n n n
u; —H;+CH£“HJ_[:0.

At dx (3.22)

This is the scheme that was used for the examples of the
introductory chapter. It was found that this scheme
was damping, with the amount of damping depending on
the wave length, with a maximum for the shortest resolv-
able wave length of 24x. The analytic solution of the
difference equation (3.2a) has been discussed by Wurtele
(1961).

The advantage that is accomplished. at least in prin-
ciple, by using upstream differencing as compared with
centered or downstream differencing, can be illustrated
by considering the domain of influence of a grid point
in different schemes. We still consider the case ¢ > 0.
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X-—c¢l == const
() ()

Domain of influence
with centered differencing

1 /

Figure 3.1

Domains of influence of a grid point, for the scheme (3.2a) with upstream differencing, for corresponding schemes with centered

and intersect downstream differencing, and for the true solution.

In the true solution, a grid point value can be said to
propagate along the characteristic x—ef = const.
Fig. 3.1 shows a grid point marked by a circle with the
associated characteristic passing through it. With
upstream differencing as in (3.2a), the value at that grid
point will influence the values at points within the domain
shaded by vertical lines. The figure also shows the
domains of influence with centred and downstream
differencing. Of the three domains of influence, that
given by upstream differencing is clearly the best approxi-
mation to the characteristic line representing the domain
of influence in the true solution.

This discussion suggests constructing a scheme for
(2.1) by tracing a characteristic back from the point
(jdx, (n -+ 1) A4r) to intersect the previous time level

= ndr and calculating the value u* at the point of inter-
section by interpolation. We thenset u} *' = u*. Choosing
a linear interpolation procedure, that employs values
at two neighbouring points at the time n4r, we obtain

.” n
urttl e uj-"_l + EL;—}'—:’- (4x — cdt).

This can be identical to the scheme (3.2a), with up-
stream differencing. If, on the other hand, a quadratic
interpolation procedure is chosen, using three neighbour-
ing points, one obtains the Lax-Wendroff scheme, as the
reader can readily verify.

For further insight into the properties of schemes that
can be obtained from (3.1a) we consider the analytic
solution of this differential-difference equation. For small
values of At this will approximate the solution obtained

from the difference schemes. As inSection 2 we introduce
the non-dimensional time t = et/dx. Eq. (3.1a) can
then be written as

Loy @+ u@—uw@=0 (3.3

dt

A solution of this equation is the Poisson frequency
function

- f—
é 1.»" P

(j—p)!
0 for j < p.

as can easily be checked by substitution. Here p is again
an arbitrary integer, that is, we have already taken into
account the fact that the location of the point j = 0 is

for j>p,

u (1) = (3.4)

X—ct = const

—ﬁ

jl

Figure 3.2 Sketch for construction of schemes by calculation of a
previous value on a characteristic passing through
the point (jdx, (n + 1) 41).
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0 1 2 3 4 5 6 78 91011 j—p

Figure 3.3 The Poisson frequency function (3.4), for the case
T =4,

arbitrary. An example of the Poisson frequency function
is shown in Fig. 3.3 ; the graph in the figure represents
the shape of this function for t = 4. There is no need to
include a vertical scale, since the area enclosed by the
graph of a frequency function has to be equal to unity, so

-1 f e
i t.-‘ P

L, Gt L (3.5
Thus, for © = 0, when, as shown by (3.4), the histogram
consists of a single rectangle, its ordinate is equal to
unity.

Consider now the change in shape of the histogram
(3.4) as the non-dimensional time Tt increases from
zero. The initial shape of this histogram, that of a
parallelogram having a base 4x and erected at a single
grid point, is, of course, equivalent to the shape of the
pulse-like disturbance (2.16) used for the example of
the previous section. As T increases beyond zero (3.4)
transforms into a skewed bell-shaped histogram of the
type as shown in the figure, with its mean position on
the x axis

o0 =T _Jf=p

-t =1
R Vv TR
moving at a constant speed. Thus, the mean position
propagates with a speed equal to the physical advection
velocity. The maximum point of the histogram, however,
lags behind as is shown by the skewed shape of the histo-
gram. Physically unjustified negative values of u
never occur and no parasitic waves appear on the
opposite side of zero from the direction of the physical
advection. Furthermore, as follows from (3.5), the total
amount of the advected quantity is exactly conserved.
However, the disturbance is damped out during the
advection process at quite a high rate.

As in section 2 we can form a solution more general
than (3.4), as a linear combination of all possible solu-
tions (3.4), that is

S -t _j—p
= £ T (3.6)
=) 4. |
& ,);_',, VY
where a,, are arbitrary constants. Substituting T = 0 into
(3.6) we obtain
u; (0) = a;. 3.7
Thus, the constants @, can again be chosen so as to
satisfy arbitrary initial conditions w; = u;(0), and so
(3.6) represents the general solution of (3.3), or (3. 1a).
Considering the behaviour of the simple solution (3.4),
and the summation limits in (3.6), we see that in general
the value u; (1) at a point j can be considered as a result
of superposition of the effect of the initial values at that
point and of the initial values at all the points located
upstream of it.

An example of the solutions (2.14), for centered
differencing, and (3.6), for upstream differencing, for
an initial disturbance of a somewhat larger space scale

1 for j=-1,0,1

0 for j=-1,0,1

.is shown in Fig. 3.4. If the grid distance is of the order

of 300 km, and ¢ is about 15 msec™ we can see that

\ 10 15 20 25

Figure 3.4 Analytic solutions of the exact advection equation
(heavy solid line), of the equation using centered
differencing (dashed line), and of the equation using
upstream differencing (thin solid line), for three
different values of the non-dimensional time T
{(Wurtele, 1961).
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5 units of non-dimensional time approximately corres-
pond to the physical time of one day. Thus, the damping
effect of the upstream differencing is seen to be quite
severe. The figure also illustrates the properties of the
two methods described, but to a lesser extent than the
examples with the initial disturbance limited to a single
grid point only. Thus we can hardly claim that the use
of upstream differencing instead of centered second-
order differencing has, generally speaking, improved the
solution.

4. Schemes with centered fourth-order space differencing

Most of the difficulties that have been discussed in
this chapter, in particular the phase speed error and the
computational dispersion, have been due to the approxi-
mations used for space differencing. Thus, consideration
should be given to other possibilities ; one is to employ
approximations of a higher order of accuracy. We shall
first construct such an approximation.

When the approximate value u; are expanded into
Taylor series about the central point, and substituted
into the finite difference quotient, we obtain

3
Uiy — Uiy _ 9 1 9
+.2dxu = a_: + 3 ;;";?3 (4x)” + 0 [(4x)"). (4.1)

Thus, this quotient is of the second order of accuracy.
It is formed by taking differences of values of u, at points
one grid distance away from the central point. Similarly
a quotient can be formed by taking differences of values
two grid distance away. We then obtain, replacing 4x
in (4.1) by 24x,

. —Uu: 3
= 4Axu'L:i = 3-'; + % —j—;% (4x) + 01(4x)*). 4.2)

This quotient is still second order accurate, but the
coefficients are larger. Other consistent approximations
to Ju/dx can be formed as linear combinations of the
quotients (4.1) and (4.2). The combination for the
second order terms in the truncation errors of (4.1) and
(4.2) cancel is particularly important. This is

AUy~ Vujyuy  du 4
3 24x 3 ddx . ox + 0 [(4x)7), (4.3)

and represents a fourth-order accurate approximation
to du/dx.

We can also think of the approximation (4.3) as repre-
senting a linear extrapolation of the quotients (4.2) and
(4.1) so as to simulate an approximation corresponding to
differences taken between points at a distance d less than

dx away from the centre. A simple calculation shows
that the approximation (4.3) is obtained by extrapolation
for the value d = 24x/3. Of course, there is no reason
to expect that the accuracy of such an approximation
should decrease monotonically as d decrcases.

We now want to look at the effect on the phase speed
of using the approximation (4.3) for the space derivative
in the advection equation. Replacing the space derivative
in (2.1) by (4.3) we obtain the differential-difference
equation
u

i+~ 5=2) o (4.4

au; 4 uj g, - u
— 4 |l= J+1 =1
44x

a; 3

1

2dx 3
As in Section 2, we investigate the behaviour of a
tentative solution in form of a harmonic component

u; (1) = Re [U (1) e™¥7].

With second-order space differencing, we obtain the phase
speed

»_ sin kdx
- kAx

Now, in the same way, with fourth-order differencing we
find the phase speed

(4.5

T3 2kdx

M=cld sin kdx
T\ kdx

1 sin 2kdx)

We shall compare these two results. For second order
differencing, we obtain by series expansion for smail
values of k

c=c (I — % (kdx)® + )
On the other hand, with fourth order differencing we have
M=c (l - 3‘-‘; (kax)* + )

Thus, even though the decelerating effect is still present,
the phase speed error has been much reduced for small
values of k.

These phase speeds are shown in Fig. 4.1 as functions
of kdx, for all admissible values of k. The figure illus-
trates the very significant increase in accuracy of the
phase speed for large-scale and medium-scale waves.
However, as the wave length approaches its minimum
value of 24x, the increase in phase speed obtained
by fourth order differencing diminishes, until, finally,
the wave with wave length 24x is again stationary.
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Phase
speed

c

0 kAax
Figure 4.1 Phase speed for the linear advection equation, ¢, and

for the corresponding differential-difference equations
with second order (¢*) and with fourth order (c**)
centered space differencing.

Moreover, for short waves the slope of the phase speed
curve is greater than with second order differencing, and,
therefore, the computational dispersion of these waves
is greater. Thus, although a short wave-length disturb-
ance will now be advected at a somewhat greater speed
its false deformation, due to computational dispersion,
will be faster.

Because of the decrease in the phase speed error of the
longer waves, the use of fourth order schemes for advec-
tion has brought about significant improvements in
operational numerical forecasting in both the U.S.A.
and Japan, in barotropic and quasi-geostrophic baroclinic
models. With primitive equation models, now in use
in all advanced forecasting centres, fourth order advection
schemes are not yet quite so widespread. Still, it is gener-
ally believed that fourth-order advection schemes should
be used in operational forecasting. However, the use of
advection schemes of a high-order of accuracy in general
circulation models may not be so important. The choice
is between increasing the accuracy of space differencing
or spending an equivalent amount of extra computation
time in reducing the grid size of the model. A straight-
forward calculation (e.g. Thompson, 1961, p. 157)
shows that the first alternative should be advantageous.

The use of the additional grid points needed for higher
order differencing does create some side difficulties.
In much the same way as using more than two levels for
time differencing resulted in the appearance of computa-
tional modes in time, so the use of additional grid points
for space differencing results in the appearance of compu-
tational modes in space. Furthermore, formulation of
boundary conditions becomes more complicated. Simply
formulated boundary conditions may be a source of
serious problems.

For small scale disturbances, of a scale close to two
grid intervals in space, no finite difference method is
really satisfactory. Additional ways of constructing
difference schemes for the advection equation are discussed
in the paper by Anderson and Fattahi (1974) where further
references are given. If it is felt that, in a particular
situation, the improvement of the advection of scales
close to two grid intervals is necessary, the obvious
method is to find a way of making the computation with
a reduced grid size. As can be inferred from Fig. 4.1.,
halving the grid size with simple second-order differencing
makes the stationary two-grid-interval wave move at a
speed of almost 2/3 of its physical advection speed.
But this, of course, is not easily attainable: in two-
dimensional problems, halving the grid size increases the
computational time requirements by a factor of four,
and, with the usual time difference schemes by an addi-
tional factor of two in order to maintain computational
stability. Still, a steady increase in the capabilities of
commercially available computers enables constant
improvements of this kind, so that it is expected that in a
few years the resolution of atmospheric models may be
such that advection errors will not be a major problem.
At present it is estimated that the horizontal truncation
errors in the advection terms are the largest single source
of errors in short range numerical forecasting, accounting
for almost 40 per cent of the total error (Robert, 1974).

Another way of improving the advection of small
scale systems may be to develop a computational method
more in spirit of the Lagrangian system of equations.
As yet, such methods have not been very much explored
in meteorology.

5. The two-dimensional advection equation

We now consider the two-dimensional linear advection

equation
du du du
7 Thg Yoy, =l ma=wmm G0

where u = u (x, y, t) is a function of two space variables,
and c,,c, are the components of the advection velocity.
Thus, the advection speed is given by
c=\/c:+c3. (5.2
We shall test the stability of schemes for the numerical
solution of (5.1) by the procedure of Section 1. Thus,
space derivatives are approximated by standard second-
order difference quotients, giving

iu‘, Ly

dr 4

Uy W ivq — o
i l,;_cy i, j+1 hLj=1 (5‘3)

24x 24y
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Here, as is usual for two-dimensional problems, we have
changed the choice of subscript denoting the grid points
along x axis, so that the coordinates of the grid points
are now x = idx, y = jdy, and approximate values
u (idx, j4y) are denoted by u; ;. As a tentative solution
of (5.3) we substitute

ug, 3= Re[U (1) e**=+i], (5.4)

giving the oscillation equation

av_ il-Sq L
o --f( Zx Sin kdx % sin My) U (5.5

If the leapfrog scheme is used for the time derivative,
we obtain as the stability criterion

<L (5.6)

Sra L
(Ax sin kdx +Ay sin idy) ar

This has to be satisfied for all admissible values of the
wave numbers k&, /.

For simplicity, we shall consider only the cases where
dx = Ay, we denote this grid size by d*. In the wave
number plane, that is, a diagram with co-ordinates &/,
the admissible wave numbers are contained within the
square region shown in Fig. 5.1. Inside that region the
maximum value of the left-hand side of (5.6) is obtained
at the centre of the square, marked by a circle. The wave
represented by that point has wave lengths 4d* in both
the x and y directions so that sinkdx = sin {4y = 1.

Id*
n
0
0 m kd*
Figure 5.1 Admissible region of wave numbers for a square two-

dimensional grid, with grid length dx == dy = d*.

For a given valuc of the advection speed the left-hand
side of (5.6) has a maximum value at this point if the
advection velocity makes an angle of n/4 with the x axis,
in this case ¢, = ¢, = X

22 c. Thus we obtain the stability

criterion

I/.—":cﬁ<l. (5.7)

Therefore, in the two-dimensional case we have to choose

a time step that is v/2 times less than that permitted in
the one-dimensional case.

We note that the minimum stability is associated with
wave lengths in both the x and y directions twice as long
as the shortest resolvable wave length of 2d*, exactly as
in the one-dimensional case. The two-dimensional wave
number of this wave

Vie 1 12,

is, however, greater by a factor of /2 than wave numbers
along the axes, and its wave length is therefore shorter
by the same factor. This applies to all waves with & = /.

6. Aliasing error and nonlinear instability

Another generalization of the simple one-dimensional
linear advection equation is to consider the nonlinear
advection equation

5u+uél-‘—'=0,

7 = 6.1)

We have returned to dimension, so that u = u (x, t).

Shuman (1974) calls (6.1) the shock equation. lts
general solution (e.g. Platzman, 1964) is

u = f(x—ut),

as can readily be verified. Here fis an arbitrary function.

Here we consider only the effect of the multiplication
in (6.1). When performed in finite differences, it resulits
in an error related to the inability of the discrete grid to
resolve wave lengths shorter than 24x, that is, wave
numbers greater than k., = n/dx. Thus, consider a
function u (x) which can be represented by values at
grid points, for example

(6.2)

u = sin kx,

where k <2 kpn.,. However, substituting (6.2) into the
nonlinear term of (6.1) gives

u@ = k sin kx cos kx =lksin 2kx.
dx 2

Hence, if the wave number in (6.2) is in the interval
Y1kinax < k < Kmax, the nonlinear term will give a wave
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number that is beyond the range that can be resolved by
the grid. It cannot, therefore, be properly reproduced
in a finite difference calculation.

To gain some insight into what happens in such a
situation, consider a wave for which k > Kp.. For
example, let L = 44x/3. A wave of that wave length is
shown by the full line in Fig. 6.1. Knowing only the
values at grid points we will not be able to distinguish
this wave from the one shown by the dashed line. Thus,
with the convention adopted earlier which assumes that
the longest waves are present, we will make an error.
This is called aliasing error.

Figure 6.1 A wave of wave length 44x/3, misrepresented by the

finite difference grid as a wave of wave length 44x.

In a more general case, suppose that the function u
consists of a number of harmonic components

i = \‘ u
d

m

The nonlinear term will then contain products of harmo-
nics of different wave lengths, such as

sin k,x sin k,x,

However,

: : 1
sin k,x sin k,x = 3

cos (ky — k,|x — cos [k, + ko|x|.
Thus, even if a finite difference calculation is started with
waves which all have k =~ k,,.x. very soon through this
process of nonlinear interaction waves will be formed
with k& - k... and a misrepresentation of waves will
occur.

In general we can write
sin kx == sin [2Kpax  (2Kpux--k)] x.

Substituting here Akmax - ®/4x and using the formula
for the sinc of a difference, we obtain

. _ .2 2n
sin kx_smdxxcos(dx k)x
-cos—z—’fxsin ﬂ—ﬁ’rx
dx Ax :

However, at the grid points x = j4x, and

2n 2n
in — jdx = 0. — =1
sin T Jjdx cos Ax Jjax =1

Therefore, we find

sin kjAx = —sin (2knax—k) jdx. (6.3)

In this way, we see that, knowing only the grid point
values, we cannot distinguish the wave numbers k from
2kmax—k. Thus, if k > kpey, using the convention
mentioned earlier, we can say that the wave number k
is misrepresented as the wave number

k* = 2kpax—k. (6.4)
Hence, as shown in Fig. 6.2, the resulting wave has a
wave number k* which is less than kp,, by an amount
equal to that by which —k was greater than kp,,. We
can think of the wave number k* as being an image
obtained by the reflection of k across the value kpm,, into
the admissible range of wave numbers.

, W h

0 k* Kot k

L k
2k max

Figure 6.2 Misrepresentation of a wave number k > Kmgx, in
accordance with (6.4).

As an example consider the case L = 44x/3, illustrated
in Fig. 6.1. Then k = 3n/24x, and (6.4) gives k* =
= n/2d4x as the wave number “seen” by the finite differ-
ence grid. This, of course, is the same wave, of wave
length 44x, as the one found graphically and shown
by the dashed line.

Now consider the consequences of aliasing errors in a
numerical integration. An atmospheric variable, as a
function of space co-ordinates, can be thought of as
consisting of a series of harmonic components. It is
useful to consider the “‘energy’ of these components,
that is, their contribution to the mean square value of the
variable considered as a function of wave number.

This is the spectrum of the “‘energy”. For example,
if the variables are velocity components, this function
is the kinetic energy spectrum. This spectrum describes
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the relative importance of features of different scales in
the field of the variable. Now, experience shows that
the spectrum of atmospheric variables does not change
much with time. On synoptic maps we do not have
situations where small scale features are dominant on one
day, and absent on the next. Accordingly, spectra of
atmospheric variables also do not change much in their
general shape. The energy of a particular component can,
of course, change, but the characteristic shape of the spec-
trum as a whole is fairly constant. For example, a zonal
spectrum of the eastward velocity component in middle
latitudes typically has a maximum for wave numbers 4
to 7, that is, 4 to 7 wave lengths along a latitude circle,
with the energy tapering off rather rapidly as the wave
number increases beyond about 10. Thus, there is very
little energy in wave numbers of the order of the maximum
wave numbers that can be resolved by finite difference
grids used in atmospheric models.

In a finite difference integration, in addition to these
relatively small physical changes, the shape of a spectrum
is subject to changes due to aliasing errors. If we have a
spectrum of the shape just described, and consider the
representation of various combinations k, + k; that
are greater than k.., we see that most of the energy of
such combinations will belong to components with wave
numbers not much greater than kpy... Thus, due to
aliasing errors a spurious energy inflow is expected at
wave numbers that are not much less than kmax, and, in
time, the energy of these components can be expected to
grow beyond physically acceptable limits. Experience
shows that, if no precautionary measures are taken, this
can indeed happen, and even cause a catastrophic end to
the integration. The phenomenon is due to the nonlinear
terms of the equations, and, therefore, is called the
nonlinear instability. Nonlinear instability was first en-
countered by Norman Phillips (1956) in his famous work
that laid the foundation for the numerical modelling of the
atmospheric general circulation. Starting from an atmo-
sphere at rest, he integrated the vorticity equation for a
simulated time of the order of 30 days. The calculation then
came to an end due to an explosive increase in the total
cnergy of the system, associated with an appearance of
clongated shapes in the vorticity field. Phillips initially
believed that the breakdown was due to excessive trunca-
tion errors, and he later repeated the experiment using
space and time steps both reduced to about half of their
previous values. This must have greatly reduced the trun-
cation errors, but the catastrophic increase in total energy
still happened at about the same time.

In a later paper Phillips (1959) gave the interpretation
of nonlinear instability similar to what has been presented
here, but for the nondivergent vorticity equation. For
a test of this explanation Phillips again repeated his

experiment, but after every two hours of simulated time
he performed a harmonic analysis of the vorticity fields,
and eliminated all components with k > Yikmpax. If
there are no components with k .+ Y2kpna the advection
term cannot produce waves with k > kn.. We expect
that it will be some time before the amplitudes of the
eliminated waves are built up again to an appreciable
extent. This filtering procedure eliminated the appear-
ance of the spurious increase in energy, thereby confirm-
ing this explanation of the instability.

7. Suppression and prevention of nonlinear instability

If an integration is to be performed for an extended
period of time, it is necessary to suppress or prevent
nonlinear instability. For short range integrations it is
not necessary to do this, though such a procedure might
still have a beneficial effect on the model.

It has been pointed out by Orszag (1971) that to
eliminate aliasing errors it is not necessary to filter the
top half of the admissible wave numbers. It is sufficient
to eliminate the top one-third, because, if waves with
k > %[3kmax are filtered out, all the aliases satisfy k >2/gknax
and will thus be eliminated.

If, however, we consider that such a suppression of
the shortest waves is a satisfactory method of dealing
with the problem, it would be simpler to use a differencing
scheme that has a built-in damping of the shortest
waves. This idea is due to Richtmyer (1963), who sug-
gested use of the Lax-Wendroff scheme for this purpose.
It was found by experience that such a practice does
suppress the nonlinear instability, and that to do this
it is sufficient to use an intermittent Lax-Wendroff step
at quite long intervals (Kasahara, 1969). Kreiss and
Oliger (1973), on the other hand, recommend adding a
dissipative term to a scheme which is not dissipative, so
that the amount of dissipation can be controlled in a
more practical way.

Another way of avoiding nonlinear instability is to
use a Lagrangian formulation of the advection terms
instead of a Eulerian formulation. We calculate the position
of the parcel that should be advected to the grid point
considered in step 4f. A value of the dependent variable
can be found corresponding to that position by interpola-
tion in space. The change due to advection is set equal
to the difference between the value obtained by interpola-
tion and that at the grid point. In some cases, these sche-
mes turn out to be identical to schemes obtained using the
Eulerian formulation, but other schemes can also be
obtained. A procedure of this type was first used by
Leith (1965); an example of its use more recently is
given in the paper by Krishnamurti e al. (1973).
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A conceptually elegant approach for dealing with the
nonlinear instability problem has been suggested and
developed by Arakawa (1966, 1972). His idea is that
it is better, if possible, to use schemes for the advection
terms that are not only free of the nonlinear computa-
tional instability but also free of the spurious inflow of
energy to these short waves, instead of artificially suppress-
ing their amplitudes., The amplitudes of the shortest
waves in atmospheric models are small initially, and they
will remain small if a false generation of these short
waves is avoided. Arakawa has shown that it is possible
to construct such schemes, and that they are obtained
when care is taken to conserve in the finite difference form
some integral properties of the original differential equa-
tions.

When the Arakawa conservation schemes are used
there is no need for an artificial dissipation in the advec-
tion process. This enables the statistical properties of the
schemes to be maintained under advection, a feature
especially useful in general circulation studies.

It has sometimes been argued that, because the phase
error of the short waves is very large, they should be
eliminated before they erroneously affect the longer
waves through nonlinear interactions., This argument does
not take account of several factors. If the phase speeds of
the short waves are wrong, the situation will not necessar-
ily improve if their amplitudes are also made wrong.
They may still be performing a useful function of a
statistical nature. Also damping or elimination of the
shortest waves will also remove some energy from the
longer waves that we are interested in. If we wish to
dissipate energy, it is obviously better to do so for
physical and not for computational reasons.

We shall introduce the procedure of Arakawa by
considering the vorticity equation
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7 T rrE=0, { = ply, 7.1

where the velocity v is assumed to be nondivergent,
that is

v =k X py. (7.2)
Substituting this into (7.1) we obtain
a 2
G vv=J (7. (7.3)

This equation gives the local change in vorticity as a
result of advection by a two-dimensional nondivergent
velocity. 1t is also a nonlinear advection equation.
However, in contrast with the one-dimensional equation
(6.1), (7.3) gives a good approximate description of

large scale atmospheric processes. Thus, for more than
a decade it has been used as a basic prognostic equation
for the numerical weather prediction, eventually supple-
mented by some additional terms of a smaller order of
magnitude.

To illustrate the Arakawa procedure for the vorticity
equation (7.3), we need some knowledge of its integral
properties in wave number space. We want to study the
energy exchanges between different harmonics that are
permitted by that equation.

Consider first the kinetic energy spectrum when the
velocity is two-dimensional and nondivergent, so that
it can be given by (7.2). We can almost always assume
that in the region considered A, the stream function can
be expressed as a series of orthogonal functions

vy :Z\p,., (e.g. Courant and Hilbert, 1953, p. 369) (7.4)

where the functions y, are eigenfunctions of the Helm-
holtz equation

7iWn + Moy, =0. (7.5
The parameters A, are known as the generalized wave
numbers of the components y,.

As an example, let 4 be a rectangular region with
sides L., L,. For boundary conditions assume that the
stream function is periodic in x with period L, ahd is
zero along the lower and upper boundary. Then we can
write the stream function

2nn,
y = (an n, COS L, x+
LT (? 6)
. ] . Tny
+ b,,, n, SIN - x)sm _-Ly y

Differentiating this we obtain

2 2nn a nn :
= — 1 i3
== () + (] v

that is,
2
2 [2nn i + [Fm2
R

If the region A had different geometry, another set of
orthogonal functions would satisfy (7.5) and the bound-
ary conditions, and could be used for the expansion (7.4).
These functions will be solutions of the Helmholtz
equation (7.5).

Define the average of a variable a by
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_ IJ
a=-— | adA.
A A

We are interested in the average value of the kinetic
energy per unit mass

= I 2 —
K=5[u2+vl=5|7w-w— (7.7

Substituting (7.4), and assuming that this series can be
differentiated and integrated term by term, we obtain

1 l
K=3 VZIW,,' VZ"«FM=§ Z,w,,- Z,W,,,=

=3 L L P,

We note that
PYm * PVn = P " (Wm PVn)— VY P2 W,

Assume that no mass transport occurs through the bound-
aries of A, that is,

TR

Using (7.5), we then obtain

PRI e

Since the functions y, are orthogonal, that is,
VYauW,=0 for m #n,

the double sum reduces to a sum over only a single
subscript, namely,

el 3 =
K—;—,Zlnw".

We have therefore expressed the average kinetic energy
in the region A as a sum of contributions of different

harmonics
K=Z]K"' (7.8)
where
K, =52yl (7.9)
The contributions K. considered as a function of n,

represent the Kinetic energy spectrum.  As seen from
(7.9), they are never negative. When the stream func-
tion y is known, the functions y, can be computed by
standurd series expansion methods. In fact, we calculate

the coefficients of these components; in (7.4), these
coefficients have been absorbed into the functions wy,.
Since the values of A, are already known, for commonly
used geometries, we can calculate the kinetic energy
spectra using (7.9). Such a calculation, as well as the
calculation of the spectra of other variables, has been
used for numerous studies of the behaviour and structure
of both the observed and numerically simulated fields of
atmospheric variables.

The mean square vorticity
g = (p* v?)?

can be expressed as a sum of contributions of different
harmonics in a similar way. Substituting (7.4), using
(7.5), and the orthogonality of the functions y,, we obtain

7
c=ZﬁE-

Substituting the expression (7.9) for the kinetic energy of
a component y,; we find for the average value of the
enstrophy half the vorticity squared,

17
58 =Z}1§Kﬂ.

Comparing this with (7.8) we see that the average wave
number is related to average values of enstrophy and
kinetic energy. Define the average wave number as

(7.10)

(7.11)

A= [/Z}aﬁxn/z'j{c. (7.12)
Substituting (7.11) and (7.8) we find
1 332 7
x:|/5t; K. (7.13)

Thus, when the velocity is two-dimensional and nondiver-
gent, the average wave number is determined by the
ratio of the average values of enstrophy and kinetic
energy.

We originally wished to study the time dependence of
the energy of spectral components permitted by the
vorticity equation (7.3). It will suffice to look at the time
dependence of (7.13). (7.3) gives

9

L= Zi=tTTe. 019

Again assuming no mass transport through the bound-
aries of A, we find
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2

) —_ a1 - g
a K=y =pv 5 pv=

(7.15)
p— a -,
=~y v =-vIEV.
However, for any two scalar quantities p, ¢, we have
J(p. ) =k v x(prg) = —k-y X (¢rp),
Using Stokes’ theorem, we see that

J(p,q9) =0,

if either p or ¢ is constant along the boundary of 4.
Under the same conditions, we have

pl(p,9) =0, 4q/(p,q =0.

Therefore, if we assume that y is constant along the
boundary of 4, (7.14) and (7.15) give

(7.16)
(7.17)

%;’ = const, and X = const. (7.18)
In this way, we find that the average wave number does
not change with time with two-dimensional nondivergent
flow. In other words, a systematic energy cascade
toward higher wave numbers is not possible. Furthermore,
since to obtain the enstrophy the contributions K, are
multiplied by the wave number squared, the fraction of
the energy that can flow to high wave numbers is clearly
limited, and the higher the wave number, the more it is
limited (Fjertoft, 1953).

As pointed out by Charney (1966) this sitvation can
be illustrated by a simple mechanical analogy. The
foregoing relations show that

RA’=

On the left hand side here each of the two factors is
constant, as the first one is equal to the average energy.
Thus, as shown in Fig. 7.1, we can imagine a semi-infi-
nite weightless rod on which a weight X is suspended at
a distance A? to the left of the point at which the rod
itself is suspended, and weights K,, X,, ... are sus-
pended at distances A%, A3 ... right of that point. The
rod, as defined, would be in mechanical equilibrium.
Its left side, moreover, cannot change, while on the right
hand side an interchange of mass between weights is per-
mitted, but only so as not to disturb the equilibrium,
that is, the total moment of forces. Thus, at least three
components must ziways take part in an energy transfer.
In particular very little energy can be expected to accu-
mulate at the highest wave numbers through a cascade
of energy from the lower wave numbers.

2
K, A, = const,

A? A A2 A}
Figure 7.1 A mechanical analogy of the interchange of energy

between harmonic components.

We now return to the numerical solution of (7.3) and
the associated nonlinear instability problem. Obviously,
if a finite difference scheme could be constructed so as to
conserve the average values of enstrophy and the kinetic
energy, the average wave number would not change, and,
therefore, a systematic transport of energy toward the
highest wave numbers would not be possible. Arakawa
has pointed this out, and showed that finite difference
approximations can be constructed that, indeed, maintain
the properties (7.17) of the analytic Jacobian. Therefore,
average enstrophy and Kinetic energy are conserved
within the advection terms, and so is the average wave
number. Nonlinear instability is therefore prevented.
His approximations, in addition, maintain the property
(7.16), and thus also conserve the average vorticity.
Thus the gross characteristics of the frequency distribution
of the vorticity field are also conserved. The true non-
divergent vorticity equation conserves all moments of the
frequency distribution of the vorticity since the area
and the vorticity of individual fluid parcels are both
conserved. Maintaining properties (7.16) and (7.17),
in a finite difference calculation will guarantee the conser-
vation of the first two moments of this distribution.

We illustrate Arakawa’s method by considering how
to satisfy (7.17);. In our finite difference calculation it
takes the form

1
== = 19
¢, 1, G =g ‘};,CU. J@w=0, (1.19)

where J denotes a finite difference approximation to the
Jacobian, and N the total number of grid points.

There are many ways of constructing finite difference
approximations to the Jacobian. We can use any of the
three equivalent analytic expressions

_9p 99 _9p 99 _
I p.q) = 5 dy ~ dy dx
-9 dp)|_2 | 9p
=5l Z(e)= 0w
=9 9_2|( 99
= ax(" ay) ay(Pax)
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We shall consider only approximations of the second
order of accuracy. With the simplest centered space
differencing, we require values of p, ¢ from a box of
nine adjacent grid points to evaluate (7.20), as shown
in Fig. 7.2. Write d for the grid size, and Pr, i for the
values of p, ¢ at the point denoted by k. We then obtain
the following approximations to the expressions (7.20)

-~
e (=]
)
co e

O

Figure 7.2 Stencil used to define approximations to Jacobian.

X |
J w4)=zﬁba—%ﬂﬁ‘%%
(7.21a)
‘{pz-p4l (q, - Q’JJ,.
7 (pg)=— x[ (b~ p)
q)=—3X%X|q (p-p)-
L S (7.21b)
- g (p8 -p?) ~ 4 (PS_PS) + q, (,06‘ Pj)].
I (poy) = ! *Ipfq q,)
. "'_,_' = =
4d e (7.21¢)

—%{%—QQ*%(%*%J+a(%‘%¢

The superscripts | and X denote the positions of the
points from which values of p and ¢, respectively, are used
to form the approximation. Each of the approximations
(7.2) is consistent and of the second order of accuracy.
A more general approximation can now be formed as
a linear combination of these three, that is

J(p,q) = ad' - BI* | yI X, (7.22)
with the consistency requirement

o+pB+y=1L

This approximation is also of the second order of accur-
acy.

When evaluating the sum in (7.19) using (7.22) we
obtain 24 terms from each grid point in the computa-
tional region. All of these terms will be of the form
const * £ §; Wm. By choosing the constants d, B,y
appropriately we can make all of these terms cancel out
in the summation process, thereby fulfilling (7.19). For
example, the point 0 will contribute terms to (7.19) of
the form

|
ol Gw) = a (a8y8, ¥, + 23 more terms).

A term containing o §; Wy, will also appear in the expres-
sion for §; J, (€, y). Because of the form of the Jacobian
approximations (7.21) it will have to come from the
product psqe. Thus, one contribution from the point |
will be

|
0=B:Y=§I

These two terms will cancel if o = B. Arakawa has
shown that, when

&4 Gy = éj‘ (=BG Gy, + =)

not only do all the terms in the sum (7.19) cancel, but
also all the terms in the expression for the conservation of
the average kinetic energy, and the average vorticity
(Arakawa, 1966 ; Lilly, 1965). Thus, the approximation

7, E%(J+++J"‘++J+"), (7.23)

will conserve average vorticity, enstrophy and kinetic
energy when used for the numerical solution of (7.3).
This is more than sufficient for the prevention of nonlinear
instability. The approximation (7.23) is usually called
the Arakawa Jacobian. Arakawa has also shown how
to construct an approximation of fourth order accuracy
to the Jacobiun, conserving these three quantities.

It has recently been demonstrated (Jespersen, 1974)
that the Arakawa Jacobian can be derived as a special
case of the so called “finite clement method™, a relatively
new and promising development in the field of the
numerical solution of partial differential equations,
Instead of approximating the space derivatives by finite
differences, the finite element method consists of using
an interpolation procedure to convert a set of values
given at grid points into a field given everywhere. This
is done using a variational formulation, minimizing the
error of the approximation (e.g. Cullen, 1974).
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Arakawa has constructed an analogue of the scheme
(7.23) for the vorticity cquation to approximate the
advection terms in the primitive equations in the case
when the wind is nondivergent. This scheme is then
generalized to allow for divergence (Arakawa, 1972;
Arakawa and Lamb, 1976).

In conclusion, we stress that the essence of the Arakawa
method is to control the computational energy cascade,
by conservation of the average wave number within the
advection terms due to the nondivergent part of the flow.

THE ADVECTION EQUATION

Thus, it is not only a conservation of encrgy, as has
sometimes incorrectly been implied. For example, an
approximation can easily be constructed for the non-
linear term of the one-dimensional advection equation
(6.1) which would conserve the kinetic energy. Using
such an approximation, however, would not prevent
nonlinears instability in the way that the Arakawa
scheme does. The Arakawa procedure does not have a
one-dimensional analogue, as the nondivergent vorticity
equation (7.3) is not nonlinear when applied to a one-
dimensional problem.
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THE GRAVITY AND GRAVITY-INERTIA WAVE EQUATIONS

In this chapter we consider the equations describing
the horizontal propagation of gravity and gravity-inertia
waves. Mathematically, this means that we will be dealing
with a system of two or three partial differential equa-
tions of the first order. Thus, we will now have rwo or
three dependent variables. The system of equations will
always be equivalent to a single differential equation
of a higher order. This equation can be obtained from
the system by elimination of dependent variables.

We first put this problem in perspective. Arakawa,
(Arakawa, 1970), has stated that there are two main
problems in finite difference integrations of the atmo-
spheric governing equations. One is a proper simulation
of the geostrophic adjustment process. Through this
process the atmosphere establishes a characteristic quasi-
nondivergent state, mostly as a result of the dispersion
of the gravity-inertia waves. The associated computa-
tional considerations will be discussed in this chapter.
The second problem is the prediction or simulation of the
large-scale quasi-nondivergent flow after it has been
established. Here the horizontal advection is the dominat-
ing mechanism. The associated computational consi-
derations were discussed in the preceding chapter.

Extensive study of the problems in integrations of the
gravity-inertia wave equations began in atmospheric
modelling much later than studies of the advection
problem. After Richardson’s (1922) first unsuccessful
numerical integration of the complete primitive equa-
tions, the successful result of Charney, Fjortoft and von
Neumann (1950) was largely due to the exclusion of
gravily-inertia waves from their equations by using
the geostrophic approximation in the vorticity equation.
The governing equations with the gravity-inertia waves
excluded, are customarily called the filtered equations.
They bypass the geostrophic adjustment problem. The
filtered equations were used almost exclusively in the
first decade of numerical forecasting research.

LiTorts to improve the performance of numerical
models led to a desire to include the non-geostrophic
effects. This is very difticult to do within the modified
system of equations. Thus, starting with the first success-
ful experiments by Hinkelmann (1959), modellers came
back to using the primitive equations. Except for special
purposes, the primitive equations are used almost

exclusively in atmospheric models today. They are
generally considered superior for both research and
operational applications (e.g. Sawyer, 1972). The speed
of propagation of the gravity and gravity-inertia waves,
and their sensitivity to various numerical errors mean that
their treatment requires especially careful consideration.

. One-dimensional gravity waves: centered space
differencing

We shall first consider the simplest case of gravity
waves where the dependent variables are functions of one
space variable. They are governed by the linearized
equations

Ju __dh ok
a  fax' o

‘?“'=_H.‘7_”

ox g, H = const. (l.1)

Thus, we have a system with two dependent and two
independent variables.

We seek wave solutions of (1.1) in the form
u(x,t) = Re (e ® 2] h(x,1) = Re [?re""‘"" 1.(1.2)
and obtain the homogeneous system
vii = gk}:, \r}; = ka:\, 4
giving the frequency equation
v: = gHkK®. (1.3)

Thus,

(1.4)

showing that the gravity waves can propagate along
the x axis in both directions at a speed V/gH. This
speed is not a function of wave number so that there is no
dispersion of the waves.

Consider now the differential-difference equations

Ny cglini=tim, I g W= Yy, (1.5)
a1 2dx a1 24x
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that we obtain when the space derivatives in (1.1) are
approximated by centered finite difference quotients
using values at the two nearest points. The solutions
(1.2) now take the form

uy (t) = Re[fi & %450) h (1) = Re[h &' ®4=-0]. (1.6)

Substitution of these solutions into (1.5) leads to

: N i
va:gsm kdx 4 v3=H5m kAx Y
Ax dx

giving the frequency equation

v

e 2
2= gH sin kdx). (1.7)

dx

Thus, instead of a constant phase speed, the gravity
waves now propagate with the phase speed

c* =+ VgH M’

kdx (1.8)

or

sin kdx
Y P (1.9)
This phase speed is a function of wave number, and, thus,
we see that the space differencing again results in compu-
tational dispersion. The formula (1.9) is the same as
the one obtained in the preceding chapter when consider-
ing the advection equation. Therefore, both the phase
speed and the group velocity depend on the wave number
as shown in Fig. 2.2 of the preceding chapter. The
phase speed decreases as the wave length decreases, and
the wave with wave length 24x is stationary.

There is, however, an important difference between
this problem and the advection problem because we
now have two dependent variables. We have assumed
that they are both carried at every grid point, as shown
in Fig. 1.1.

(DA

Figurc 1.1 A grid with two dependent variables that are both

carried at cvery grid point.

As far as the system (1.5) is concerned, however,
the underlined variables in the figure depend only on
other underlined variables. The same statement holds
for the variables that are not underlined. Thus, the grid

in the figure contains two elementary ‘‘subgrids”, with
the solution on one of these subgrids being completely
decoupled from the other. Thus, it would be better to
calculate only one of these solutions, that is, to use a
grid as shown in Fig. 1.2. Such a grid, with variables
carried at alternate points in space, is called a sraggered
grid. The computation time needed to solve (1.5) on
this grid is reduced by a factor of two, and the truncation
error is the same. Furthermore, the waves with kdx >
> m/2 have been eliminated, and these are just the waves
associated with large phase speed errors and negative

Figure 1.2 A grid with two dependent variables that are carried
at alternate grid points.

group velocities. Thus, when using such a staggered
grid, the phase speed and group velocity diagram shown
in Fig. 2.2 of the preceding chapter is reduced to its
left half, covering waves with wave lengths of up to
44x only. This is a tremendous improvement.

If we wish to have waves with wave lengths between
44x and 24x in our calculation we can reduce the grid
length by a factor of two and perform a much more
accurate integration, using the same amount of compu-
tation time than with a grid that is not staggered.

2. Two-dimensional gravity waves

We now consider two-dimensional gravity waves. Thus,
we consider the system of linearized equations

u__ oh ov__ ok
ar g&x' at gay
(2.1)
Qﬁ = - HFP-v»,
di
Substituting the wave solutions
u—=Re [;}euuuy ), vﬁRe[‘;euxzuy—ml,
A 2.2)
h__Re [hellkr*ly-v[)],
we now obtain
Vi = gH (kK + I*). (2.3)

Thus, in the two-dimensional case the gravity waves
propagate with the same constant phase speed \/gH.

Because of the results obtained in the preceding
section, we first consider the spatial distribution of the
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variables. With two dimensions and three dependent
variables, a large number of spatial arrangements of the
variables arc possible. For the present we consider the
three rectangular arrangements shown in Fig. 2.1. The
identifying lztters (A), (E) and (C) are chosen so as to
conform with the symbols used by Winninghoff and

Figure 2.1

Arakawa (Arakawa, 1972). We shall denote the shortest
distance between the grid points by 4*. With the same
value of d* the lattice (E) will have twice, and the lattice
(C) four times less variables per unit area than the
lattice (A), as in Fig. 2. 1. The lattice (E) can be obtained
by a superposition of two (C) lattices, and the lattice (A)
by a superposition of two (E) lattices, or of four (C)
lattices.

The admissible regions of wave numbers in the wave
number pline can be found by considering the shortest
resolvable wave lengths. Note that with lattice (E) the
lines joining the ncarest points with the same variable
make an angle of n/4 with the grid lines while with the
other two lattices these lines are along the grid lines.
Fig. 2.2 shows the admissible wave numbers. A halving
of the number of variables is associated with a halving

(A)

ld*

of the area of the admissible region of the wave number
plane.

The same standard finite difference approximations
can be used for the space derivatives in (2. 1) for all three
lattices. We write these approximations using the
difference operators 8, and 6,, defined by, for example,

(©)

Three types of lattice considered for the finite difference solution of 2.1.

__—L - = A
5. h ZZd.lk{x+d.y) h (x-d*, y)].

Thus, (2.1) can be approximated by

du dv
7 = 8%k - =-gdh,
(2.9)
2= - HGu+ 8.

Substituting wave solutions analogous as in (2.2), we

obtain

sin? kd* + sin? Id*
g

‘\r'2 = gff (25)

we define

X =kd*, Y=Id*,

(E) ©

Ad*

Figure 2.2  Admissible regions of wave numbers for the three types of lattice shown in Figure 2.1.
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the ratio of the phas_e-__speed given by (2.5), c*, to the
true phase speed v gH, can be written as

e _ sin‘ X +sin‘ Y . (2.6)
i’.gﬁ XT+7Y?

This formula reduces to the previous formula, (1.8) or
(1.9), when applied to the one-dimensional case.

The values of the relative phase speed (2.6) on the
wave number region admitted by lattice (E) are shown
in Fig. 2.3. By symmetry about the line / = k only half
of the region needs to be shown. Fig. (2.2) shows that
lattice (C) admits only the left half of the triangular region

0.6
0.8 ‘
ld* \//\b, \J' ! ’."I I1I."E ,.-0'4
£ / !
||| Ill |f (l’ 1', ! l{, y 2
III 1‘ flll { I' [ Ir L 0.0
0 n/2 n

kd*

Figure 2.3 Relative phase speed of gravity waves when the space
derivatives in (2.1) are approximated by straightfor-
ward space-centered finite difference analogues.

shown in the diagram. Clearly lattice (C) gives a more
accurate phase speed for gravity waves than the other
lattices considered here. Unfortunately, because it does
not carry the two velocity components at the same points,
there is some difficulty with the Coriolis force term.
Of the other lattices, the staggered lattice (E) is much
superior to the non-staggered lattice (A). A result with
the same truncation error can be achieved in about half
of the computation time, (exactly half if the equations
are linear), and a sizable fraction of wave numbers that
are associated with large phase speed errors and compu-
tational dispersion are eliminated. The additional time
needed for a calculation on an (A) lattice is spent on
waves that can hardly be expected to improve the inte-
gration. d

As we can see from the phase speed diagram, lattice
(E) is not free of computational problems. As with the
non-staggered one-dimensional grid discussed in the
preceding section, the solutions of (2.4) on each of the
two type (C) subgrids forming the (E) lattice are inde-
pendent and can diverge from each other. This can be a
source of serious problems. For example, if the values
of the dependent variables on one of these (C) lattices

are constant, they will be a stationary solution on that
lattice, no matter what the values of the variables on the
other (C) lattice are. Two stationary solutions, with
different constant values on each of these complementary
lattices, will give a stationary wave represented by the right-
hand corner of the triangular region in Fig. 2.3, with a
zero phase speed. This wave is usually referred to as the
two-grid-interval wave. In the same way, the (A) lattice
admits four independent stationary solutions, with
different constant values on each of its four type (C)
subgrids.

The two-grid-interval wave can easily be generated
when boundary conditions are artificially described, and,
with more complete equations, in cases when gravity
waves are generated inside the computational region.
These can be caused by heating, for example through the
release of latent heat, and by the influence of mountains.
When gravity waves are excited involving variables of
one of the (C) subgrids only, for example by forcing at
individual grid points or lines of points, the gravity wave
will propagate through the variables of this subgrid only.
The variables of the other (C) subgrid will be influenced
only through the Coriolis and advection terms on a
much larger time-scale. Thus physical effects which may
excite relatively long waves in the atmosphere may excite
spurious waves with wave lengths of approximately
two grid intervals in a computation. When these reach
an excessive amplitude, some remedial measures have to
be taken. These will be discussed in a later section.

3. Gravity-inertia waves and space distribution of
variables

In this section we discuss the effect of centered space
differencing on gravity-inertia waves. Thus, we consider
the system of linearized equations

du dh av dh
-t =g —Su
- (3.1)
E :-HV—I’.

These equations differ from those of section 2 in the
appearance of the two Coriolis terms. The Coriolis
terms contain no derivatives. However, they are difficult
to calculate on the (C) lattice, which was ideal for pure
gravity waves.

Thus, we reconsider the problem of the distribution of
the variables.

It is not obvious how we should analyse various arran-
gements of variables, Our primary concern here is to
consider (3. 1) as part of the complete system of primitive
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equations. We are interested in large-scale motions,
otherwise we would not be including the Coriolis terms.

On the large scale, the primitive equations admit two
district types of motion : low-frequency, quasi-geostrophic
and quasi-nondivergent flow ; and high-frequency gravity-
inertia waves.
excited in the atmosphere ; however, as they are dispersive,
a local accumulation of wave energy disperses with time.
This process is known as geostrophic adjustment ; the
remaining motion is in approximate geostrophic balance
and changes only slowly in time. In this chapter we are
concerned with the correct simulation of this process,
which is essentially governed by the gravity-inertia wave
equations (3.1).

We are interested both in waves caused by physical
effects, and in those caused by inadequacies of the
initial data and of the numerical procedures.

However, the details of the adjustment process do not
matter as much as the correctness of the resulting quasi-
geostrophic flow.

We shall therefore investigate the effect of the space
distribution of dependent variables on the dispersive
properties of the gravity-inertia waves. This will be done
using the simplest centered approximations for the space

Gravity-inertia waves are continually.

derivatives, leaving the time derivatives in their differen-
tial form.

The discussion is based on that by Winninghoff and
Arakawa, as presented by Arakawa (Arakawa, 1972;
Arakawa et al. 1974).

We consider five ways of distributing the dependent
variables in space, shown in Fig. 3.1. We denote by 4 the
shortest distance between neighbouring points carrying
the same dependent variable. In the figure d is the same
for each of the five lattices ; thus, all the lattices have the
same number of dependent variables per unit area. The
computation time needed for an integration on each
of the lattices will be about the same ; the properties of
the solution obtained, though, will differ because of the
effect of the space arrangement of variables.

Using the subscripts shown in the figure, we define
the centered space differencing operator by
oy
®ca) ;=7 (@t = 0ty
this rotation is applicable to all the lattices. Here 4" is the
distance between the points between which the finite

difference is taken. Thus, for lattices (A) through (D) d’
is equal to the grid size 4, and for the lattice (E) it is

(A) (B)
j+1 u,v,h u, v, h u.v,h},_’_!h h h
u, v u, v
u, v, h lu,v,h u, v, h h h h
J J
u u, v (E)
j=i u, v, h u,v,h’ u, v, h _f‘h h . h j+£ u,v_ h u, v
i—1 i i+ i—1 i i1 2
—d—» «— d—» a uv i
L] L.
©) (D) IRy
. h u u h i h h v A 1
j+1 o4 j+1 j_z u‘]V\-.k u],v
W v v u u u f“;—z- '()l f'+2
jlw how |k b ho v A | sl
r‘ (\l ﬂz |
Vv v v u u u (‘A S — Ny
R
s h u h u h Fes A h v h
i—1 i i+ i—l i i+ 1 BT o
+—d—» «—d—» Ja = AR

Figure 3.1

Five types of lattice considered for the finite difference solution of (3.1).
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equal to V| 2d. We also define an average taken over the
same two points by

Y- R—
[@ = f“;+__:,j+“;-§.;)-

(8,),; and (a¥),, are defined in the same way, but
with respect to the y axis. Finally,

@), = (Eg)t.j-

For each of the five lattices we use the simplest centered
approximations for the space derivatives and Coriolis
terms (3.1). We obtain the difference systems

du X av ===t
‘—9}-=‘g5xﬁ+fv, Ez—gsyﬁ-‘fu,
i (3-2)a
'('7';=—Hfs:lf+8;-‘ﬂr
du )l dv =X
-""r-=-gsxfl + fv, "a'?=—gayk"fu,
(3.2)s
O - HISH+ B,
du -X; av =
I =-8%h + VY, o =-g8h— i,
(3.2
%? =-H(8u+ 8y,
(3.2)p
a X X
d e HET + 57,
a av
5—:‘ =-g8:h + fv, Tl =-gbh - fu,
(3.2
D HGu + 5y).

We shall first analyze a one-dimensional case, that in
which the variables v, v and 4 do not vary with y. Thus,

we haVe u, V,}! = Uu, V,h(x,f)-

The system (3.1) then reduces to

du dh dv
T=EE T =S

@_HH@ (3.3
ar ax "’

./'

~

7
£

Substituting the wave solutions (1.2), we obtain the
frequency equation which can be written as

(})zzwfgkz.

Thus, as the radius of deformation
b= VgHlf,

is never equal to zero, the frequency of the gravity-
inertia waves is a monotonically increasing function of k.
Therefore, the group velocity dv/dk is never equal to
zero. This is very important for the geostrophic adjust-
ment process, as it precludes a local accumulation of
wave energy.

We now look at the effect of the finite differencing in
space in this case. As the variables are assumed not to
depend on y, the systems (3.2) reduce to

(3.4

du —x av
z=—gﬁxh+fv, E:_fu'
(3.5)a
'ag::" =~ H¥d,
du adv
E:-gﬁ,k+fv, —a—£=~fu,
(3.5)s
%’ :-stu,
%=-gﬁxfr+fix, :9—=—f§x,
3.5
B s (3.5
; =" My
du X = av .
7r=-35‘h + /v, ?7;::—_[&(,
(3.5)p
o - HEW,
du av
5:—35xk+fv, Ez_f"'
(3-5e
% :*HSIU-
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Substitution of wave solutions into these systems gives
the frequency equations

( })z= 1+ (%)2 sin? kd, (3.6)a
(}-]2= 1+ 4 (})2 sin? "2—"', (3.6)s
(})22 cos? %‘-f + 4 (3)2 sin? l;—d (3.6)c
(}.)2 = cos? % + (dl)z sin? kd (3.6)p
e oo

The non-dimensional frequency v/fis now seen to depend
on two parameters, kd and A/d.

We shall analyze the dispersion properties revealed
by these expressions for each of the five lattices. The
wave length of the shortest resolvable wave along the x

axis is 2d for lattices (A) through (D), and \/2_& for the
lattice (E). Thus, we have to consider therange 0 <kd< =
for lattices (A) through (D), and the range 0 < kd <

< 4/2n for the lattice (E).

Lattice (A): The frequency reaches a maximum at
kd = m[2. Thus, the group velocity is zero for k equal
to n/(2 d). If gravity-inertia waves of approximately that
wave number are excited near a point inside the computa-
tional region, for example by nonlinear effects or forcing
through heating or ground topography, the wave energy
stays near that point. Beyond this maximum value,
for nf2 < kd < =, the frequency decreases as the wave
number increases. Thus, for these waves the group
velocity has the wrong sign. Finally, the two-grid-interval
wave with kd = n behaves like a pure inertia oscillation,
and its group velocity is again zero.

Lattice (B): The frequency increases monotonically
throughout the range 0 < kd < m. However, it reaches
a maximum at the end of the range, so that the group
velocity is zero for the two-grid-interval wave with
kd = =,

Lattice (C): The frequency increases monotonically
with kdif A /d > 1/2 and decreases monotonically with kd if
Afd < 1/2. It again reaches an extreme value at kd = =,

associated with a zero group velocity. For A/d = 1/2 the
group velocity is equal to zero for all k.

Lattice (D): The frequency reaches a maximum at
(A/d)® coskd = 1/4. The two-grid-interval wave at
kd = m is stationary.

Lattice (E): The frequency reaches a maximum at
kd = :th/z. The shortest resolvable wave with kd =4/2n
behaves like a pure inertia oscillation, and its group
velocity is again zero.

A summary of these results is shown in Fig. 3.2. It
shows the functions | v |/f, in the case y/d = 2.

The functions | v|/f given by (3.4) and (3.6), with
Ald = 2.

Figure 3.2

The figure vividly illustrates the inadequacy of the lattices
(D) and (A). The phase speed and dispersion properties
of the remaining three lattices are much better : however,
zero group velocities occur with every lattice. Thus, with
any lattice there will be difficulties in the geostrophic
adjustment process.

The difference between the results for lattices (B) and
(E) is interesting because these two lattices can be obtained
from one another by a rotation through an angle of n/4.
If we consider the one-dimensional case in which the
dependent variables are constant along the lines
» = x + ¢, we obtain results for these two lattices that
are exactly opposite to those in Fig. 3.2. In general,
we define the coordinate system x’, ' by rotating the system
x,y in the positive direction through an angle of =n/4,
and then, using the relations

/5

u’=72(u+v), V2

¥ =—2—(—u+vl.
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change from variables v, v, h to new dependent variables
u',v',h. We find that this transforms the system (3.2)g
into (3.2)g, and, conversely, (3.2)y into (3.2)g. Thus,
the dispersion properties of the lattices (B) and (E) can
be considered equivalent. A gravity-inertia wave in one
of these lattices has phase speed and dispersion properties
identical to those of the same wave with its front rotated
through an angle of n/4 in the other lattice.

Obviously, we should also consider the two-dimensional
case. The values of | v|/f that are obtained in the two-
dimensional case for the true solution and those using
lattices (B) and (C) are shown in Fig. 3.3 with A/d' = 2.
The diagram for lattice (E) can be obtained by a counter-
clockwise rotation of the (B) lattice diagram.

THE GRAVITY AND GRAVITY-INERTIA WAVE EQUATIONS

The (B) or (E) lattices have a problem with false low
frequencies of the shortest waves. The two-grid-interval
wave, that was stationary as a pure gravity wave, now
behaves like a pure inertia oscillation. The difficulty
arises from decoupling of the gravity wave solutions on
the two complementary (C) type subgrids. Methods of
dealing with this will be discussed later.

4. Time differencing; the leapfrog scheme and the
Eliassen grid

Properties of time differencing schemes applied to the
gravity wave equations can be deduced from the analysis
of Chapter 2, as was done for the advection equation.

(A) (B) (C)
IO"-., I-.O"
A \ !
= \ 1.5
0.8 A y T~ 0.84
0.6 1 \ D6 \
13 ) —_
s 0.4 ™ = \ ’
M N 0.4\ \
T — ! 3.5
021 2 M 0.2~ 2
i.5 \ o \
) VD 10 L Y N, 8. 1 O L T .
0 02 04 06 08 1.0 0 02 04 06 08 1.0

kd/n

kd|n

kd|n

Figure 3.3 The functions |v|/f, for the true solution and for solutions of systems (3.2)p and (3.2)c, with A/d = 2.

The diagram for lattice (C) in the two-dimensional case
is seen to be a much better approximation to the exact
solution than the (B) or (E) lattice diagram. In the (B)
lattice diagram the dot-dashed line shows the maximum
| v|/ffor a given ratio //k; note that there is no such line
in the (C) lattice diagram and the exact solution. Such
a maximum occurs at only two corner points of the (C)
lattice diagram. Thus, with the (C) lattice, no waves
have a group velocity with the wrong sign. The situation,
though, does depend on the parameter /d. With a stra-
tified atmosphere the radius of deformation A depends
on the stability ; if the stability is so weak as to make A/d
of the order of 1 or less, the (C) lattice loses the advantages
shown in Fig. (3.3). However, for typical grid sizes used
in atmospheric models this is not the case and therefore
Arakawa (Arakawa and Lamb, 1976) concludes that the
lattice (C) is the best lattice to simulate the geostrophic
adjustment process. Accordingly, it is at present being
used in the general circulation model at the University
of California at Los Angeles, and also in the British
operational model.

We shall demonstrate this for the one-dimensional
equations

Ju du oh _
7’+c3+33x—0,

dh dh du
E'P (.‘:9;+Hax

(4.1)

i

We first multiply the second of these equations by an
arbitrary parameter A, and add the result to the first
equation. We obtain

9 du dh _
7 +M) +(c+AH) 5 + (g+Ae) 72 =0. (4.2)

We wish to choose A so that

E-I-J\r: iy

c+AH ~ 4.3)
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to obtain an equation with only one dependent variable,
u + M. The two solutions of (4.3) are

- g
A=t /i (4.4)
Substituting these into (4.2) we obtain
a2 Y -
[a: + (c+ @)E] (u + M{—_h)_O.
4.5

0.

[ + (¢ - )_l ( V )
This is the normal form of the system (4.1). It shows that
(4.1) is equivalent to a system of two advection equations.

The quantity u + \/g,th is seen to be advected at a
velocity ¢ + \/g—H in the direction of the x axis, while,
at the same time, the quantity u—\/ﬁh is advected in
the same direction at a velocity c—\/g—H.

Suppose now we choose a grid that carries both u and A
at every grid point. The systems obtained by using
centered space differencing in (4.1) and (4.5) are then
equivalent. We can therefore use the same procedure
as in Section | of Chapter 3 to analyse time differencing
schemes. We obtain the same results as before, except
that in place of the advection velocity ¢ we now have
c -+ \/gH. Thus, if the leapfrog scheme is used for the
time differencing, and ¢ is considered positive, we obtain
the Courant-Friedrichs-Lewy stability criterion for this
case as

(c + veH) 5 “.6)

The advection velocity in the atmosphere is normally
about an order of magnitude less than the phase speed
of external gravity waves. Accordingly, in the foregoing

criterion ¢ is often neglected compared with \/gH
giving the stability requirement

p{g_ﬁfim .7

When using the three-dimensional primitive equations,
external gravity waves are normally eliminated by per-
mitting no vertical velocity at the upper boundary. The
highest phase speed admitted by the system is then that
of the Lamb waves, which for an isothermal atmosphere
is

+ YRT,

where ¥ = ¢,/c,. If we neglect the first term and recall
that the scale height of an isothermal atmosphere is

H* = RTJg,

we see that the phase speed of the Lamb waves is of the
same order of magnitude as that of the external gravity
waves. Thus, in view of the relation between stability
and the phase speed, we see that (4.7) should also repre-
sent an approximately correct stability requirement in
the three-dimensional case. With the highest phase
speeds of the order of 300 m sec™, and a grid size of
about 100 km, this requirement does not permit time
steps longer than about 5 minutes. This time will be smal-
ler by a factor of 4/2 with two horizontal coordinates.
The CFL stability condition thus means that a large
amount of computer time is required for integration of
the primitive equations, especially when the grid size is
small to reduce errors in space differencing. For this
reason some investigators prefer using implicit time dif-
ferencing schemes, so that the choice of time step can be
based solely on accuracy and not on stability.

We can also study the stability and other properties of
time differencing methods applied to the gravity wave
equations by direct substitution of wave solutions. For
example, consider the leapfrog scheme with centered
space differencing applied to the two-dimensional system

du ah av dh
—+ ax =0, -(5;-!-35—0,
4.8
ﬁ+HP’ 0. e
at e

Using one of the lattices of Fig. 2.1 as well as the notation
of Section 2, we obtain

uttl =y g At § 00, v = vl 2gdt § 4",
(4.9)
A = U 2HAL (8,u + 8,v)".
Substituting the wave solutions
= Re[A" ae((tnlw]‘ w = Re [A" Qem:zuy:]'
A (4.10)
"t = Re [knheilkxﬂy]]‘
we obtain the homogeneous system
(A—1) 21+ iA2V/2 gusin Xh =0
(A2—1) b+ iA2V/ 2gusin Yh =0,  (4.11)
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iX24/2 Hy (sin X & + sin Y 3) + (3=1)h = 0.
Here X and Y are defined as in Section 2, while

K= 4t/(1/24%),

that is, p = Ar/d when the lattice (E) is chosen.

The properties of the numerical solution can now be
studied by analyzing (4.11). The requirement that its
determinant be equal to zero gives six solutions for A.
Two of these are

A=1 (4.12)
and
A= —1 (4.13)
The remaining four are given by
A= 1—44 +24/24 (24—1) (4.14)

where
A = gHp® (sin® X + sin® Y).

We can now analyze the solutions (4.10) associated
with the values found for A. The first of these values,
(4.12), gives a neutral and stationary solution. If either
sin X or sin Y is non-zero in this neutral and stationary

case then, according to (4.11), we have I? = 0, and the
solution represents a physically acceptable translatory
motion. If, however, sin X and sin Y are both equal to
zero, the amplitudes of all three dependent variables can
take arbitrary values. In addition to the physically
acceptable solution where all the dependent variables
are constant (k = / = 0), there is a solution with one or
both of the wave numbers k and [ equal to n/d*. This
is the two-grid-interval wave, discussed already in Section
2. It again appears as a false computational solution ;
since it is stationary, it is not affected by the introduction
of time differencing.

The second value, A = —1, represents a false compu-
tational mode in time, with a period of 24¢. This com-
putational mode results from using a three time level
scheme.

To prove stability of the scheme the behaviour of the
remaining solutions given by (4. 14) has to be investigated.
They will all also be neutral for 24 < 1. To obtain the
condition in the form Bdr < 1 we write

V24 <.

Since this has to be satisfied for all the admissible waves,
we find that the CFL criterion in the two-dimensional
case is now

24VgHp <1, 4.15
or
|/2gﬁj-§<]. 4.16)

This is in agreement with the previous results. The
nondimensional constant on the left side is sometimes
called the Courant number.

With solutions like (4.10), the frequency v is given by
A= |l[e""‘,

Thus, the expressions obtained for A can be used to calcu-
late the relative phase speed c* j\/g_H using the relation

c* 1 “Nim
s tan . 4.17
e, R riva; fin e i Rl Wl e

If we are given A® rather than A, as here, we can express
the relative phase speed as a function of (A%), and
(A®,.. Thus, using (4.14), we find for 24 < 1:

c* 1
R

GH 2 V2gH(XIF 7D

zm}-

1-44

(4.18)

X arc tan (*

This expression, of course, approaches (2.6) as 4t
approaches zero.

For a more explicit illustration of the effect of time
differencing, we can perform a series expansion of (4.18).

One obtains, for vV 24 < l,"\/i,

¢ 1/sinX + sin2 ¥

Vel X‘+Y

The factor multiplying the series in parenthesis describes
the decelerating effect of space differencing, as given
by (2.6). The acceleration resulting from the leapfrog
time differencing is beneficial, as it reduces the phase
error due to space differencing.

The values of the relative phase speed (4.18) are shown
in Fig. 4.1, for the physical mode with 2V/gHp=0.5.
The wave number region shown here is the same as in
Fig. 2.3, where the effect of space differencing alone was
considered. Comparison of these figures shows little
difference between the two families of isolines. The
relative acceleration due to the time differencing has a
maximum at the upper corner of the diagram, but the
relative phase speed here is still poor.

I 3 2 e
(I+-3-A s A ),
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Id* \/

0 n/2 n
kd*
Figure 4.1 Relative phase speed of gravity waves, with centered

time and space differencing, and Courant number
equal to 0.5.

Finally, we point out that time differencing suggests
new ways of distributing the variables, as the grid can
now also be time-staggered. A good example is given by
the linearized system

du dh av dh _
-5‘—+g-a—x*fv—0. :3-;+gay+fu_0,
4.19
o 4.19)

=+

du dv
9 H—+——)—0,

dx dy

approximated using lattice (E), the leapfrog scheme and
centered space differencing. If all the variables were
calculated at every time level, there would be two inde-
pendent solutions. The solution involving the variables
of the space-time grid shown in Fig. 4.2 would be indepen-
dent of that involving the variables that are left out in this
figure. The second grid can be obtained by shifting the

grid a distance Vv 2d* along the line y = x. Thus, as
with the space grids discussed in Section 2, the space-
time grid formed by using the (E) lattice at every time
level can be considered as a superposition of two element-
ary subgrids of the type shown in Fig. 4.2, Solving the
system (4. 19) on only one of these saves half the computa-
tion time, with no change in the truncation error. In
addition the computational mode in time, given by
(4.13), is eliminated, as the variables at alternate time
levels are missing. Thus, with a more complete system
of equations, the gradual separation of solutions at
alternate time levels is not possible. The advantages of
the space-time grid shown in the figure were pointed out
by Eliassen (1956) at an early stage in the study of the
primitive equations, and it is called the Eliassen grid.

However, as pointed out by Platzman (1958 ; 1963)
the grid in Fig. 4.2 can again be considered as formed by a
superposition of two subgrids, where in each of these
subgrids only the height is kept at one time level and the
velocity components at the next, Platzman calls this sub-

grid the Richardson grid. A single Richardson grid is
considered as a time-staggered version of the (C) lattice
and suffices for the solution of the pure gravity wave
system (4.9) ; thus, on an Eliassen grid the system (4.9)
has two independent solutions. Using the difference
system considered above to approximate the differential
system (4.19), these solutions are coupled only through
the two Coriolis terms.

t

(n+1)4r
' L S
- S
T 7
(n—1) 4t “/ //

=

X

Figure 4.2 A space-time grid staggered both in space and time,
convenient for the leapfrog scheme associated with
centered space differencing.

5. Economical explicit schemes

The fact that we are now solving two equations, the
equation of motion and the continuity equation, sug-
gests new ways of constructing time differencing sche-
mes. Some of these have recently attracted the attention
of atmospheric modellers.

As seen in the section 4, an inconvenient feature of
gravity waves is the high computer time required for
a solution using explicit schemes for the time differencing.
The time step imposed by the CFL stability criterion is
generally considered to be much less than that required
for an accurate integration of the slower quasi-geostro-
phic motions. With these steps, the errors due to space
differencing are much greater than those due to time
differencing. Robert (1974), for example, estimates
that the typical errors due to space differencing in present
atmospheric models amount to nearly 40 per cent, and
those due to time differencing only to about I per cent
of the total error. Thus, any economy that can be made
in time differencing is welcome, as the time that is saved
can usefully be used to increase the accuracy of the space
differencing.
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Two explicit schemes that are more economical than
the standard leapfrog scheme will be given here. They
both achieve economy by using a different integration
procedure for the height gradient terms of the equation
of motion and for the divergence term of the continuity
equation. For brevity, we call these terms the gravity
wave terms of the governing equations.

We shall discuss the properties of one of these “econo-
mical” schemes in some detail. It is obtained by first
integrating the gravity wave terms of either the equation
of motion or of the continuity equation forward, and
then those of the other equation backward in time. Thus,
this scheme could be called the forward-backward scheme.
With centered space differencing, (4.8) is approximated
by

untt = ut—gdt 8,47, V= V" —gdt § 4",

5.1
hhtt = hn— HAt (8,u + §,v)" 2, -9

or by an analogous system in which the order of integra-
tion is reversed.

Substituting the wave solutions (4.10) we find three
solutions for A. One of these,

A=1, (5.2
gives again a neutral and stationary solution. The
remaining two are

A=1—4+VA4(4-2), (5.3)

where the quantity A is defined as in the preceding
section. Solutions (5.2) and (5.3) are obtained for both
versions of the scheme, that is, no matter which of the
two equations — the equation of motion or the conti-
nuity equation — is first integrated forward.

Examination of the amplification factors given by
(5.3) shows that the scheme is stable and neutral for
A <2, that is, for

V24 <2.

To satisfy this for all the admissible waves, we must have

24/gHu <2. (5.4)
Thus, the forward-backward scheme is stable and neutral
with time steps twice those allowed by the CFL criterion
Jor the leapfrog scheme (Ames, 1969).

The amplification factors of the forward-backward and
of the leapfrog scheme are equal within their regions of
stability. We now compare their effect on the phase
speed by comparing the expression (5. 3), for the forward-

backward scheme, with (4.14), for the leapfrog scheme.
The right-hand side of (5.3), with A4 replaced by 44,
is equal to the right-hand side of (4.14). Because of the
definition of A, this means that A for the forward-back-
ward scheme is identical to A* for the leapfrog scheme
when time steps are used for the forward-backward
scheme twice as long as those for the leapfrog scheme !
Thus, the forward-backward scheme gives the same
result using only half the computation time needed for
the leapfrog scheme. In addition, as a two level scheme,
it has no computational mode in time.

To understand this advantage of the forward-back-
ward over the leapfrog scheme we compare the finite
difference analogues that these two schemes give for the
wave equation, since the system of gravity wave equa-
tions is equivalent to a single wave equation. Consider
the one-dimensional version of this system :

u , Ik _ . ok

du
7 Tea=0 3

+H§;

=0. (5.9

Eliminating one of the variables u, A we obtain a wave
equation

%k ?*h
We can perform the same elimination for each of the
finite difference schemes.

The forward-backward and space-centered approxi-
mation to (5.5) is

n+1 n n n
u; "= uj hivi-hj-1 _
at t e '
(5.7
Ay Vs & 5t “f++1l _ u;_:_+Ll —6
At 24x '

We now substract from the second of these equations
an analogous equation for time level n—1 instead of n,
divide the resulting equation by 4¢, and, finally, eliminate
all u values from it using the first of Eqs. (5.7), written
for space points j + 1 and j—1 instead of j. We obtain

1

_gH hiva=2h + b3

(24x)?

w2+ nfT
(41)?

=0.(5.8)

This is a finite difference analogue of: the wave equation
(5.6). Note that although each of the two equations
(5.7) is only of the first order of accuracy in time, the
wave equation analogue equivalent to (5.7) is seen to be
of the second order of accuracy.
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If we use a leapfrog and space-centered approximation
to (5.5), and follow an elimination procedure like that
used in deriving (5.8), we obtain

flj_-'-l— ijl'l-l_'_ )Un—l
(24r)2

n- < = (5.9
_'gH hj+§-2f!; |+ h;—zl

24x)° =0

This also is an analogue to the wave equation (5.6) of
second-order accuracy. However, in (5.8) the second
time derivative was approximated using values at three
consecutive time levels; in (5.9) it is approximated by
values at every second time level only, that is, at time
intervals 24¢. Thus, while the time step required for
linear stability with the leapfrog scheme was half that
with the forward-backward scheme, (5.9) shows that
we can omit the variables at every second time step, and
thus achieve the same computation time as using the
forward-backward scheme with double the time step.
This method was discussed in the previous section for
the two-dimensional case, it is the Eliassen grid. Thus,
comparing (5.8) and (5.9) shows that the economy
accomplished by the forward-backward scheme is equivalent
to that accomplished with leapfrog time differencing by the
Eliassen grid. Both of these methods avoid calculating
the false time computational mode, and thus save half
of the computation time with no effect on the physical
mode of the solution.

Comparing these two methods, the forward-backward
scheme has some advantages. With the forward-back-
ward scheme all the variables are defined at all grid
points at every time step ; this facilitates the programming
work. In addition, the forward-backward scheme can
be modified to allow propagation of gravity waves
between all points of the grid preventing two-grid-interval
noise. This modification will be described in Section 8.
No analogous method, however, has so far been proposed
for the leapfrog scheme with the Eliassen grid.

A disadvantage of the forward-backward scheme is
that it is not possible to use the leapfrog scheme for the
advection terms. However, the second-order accurate
Adams-Bashforth scheme can be used for these terms.
Its weak instability should cause no trouble because of
the relatively slow speed of the advection processes.
For example, in experiments of Mesinger and Janjic
(1974), where a multi-level model was used for simulation
of the growth of a baroclinic wave, a forward scheme
was used for the advection terms, and no signs of insta-
bility were noticed for about a two week period. The
forward-backward scheme has been used for the storm
surge problem by Fischer (1959) and Sielecki (1968), and,

in meteorology, by Gadd (1974) in experiments with the
British operational model.

Another way of constructing an economical explicit
scheme was pointed out by Shuman, Brown and Campana
(1974), and it is now used in an operational model at
the National Meteorological Center. For the shallow
water equations with this scheme, the height values at
time level n + | are first calculated using the leapfrog
scheme, and then the equation of motion is integrated
using the height field averaged over the time interval
24t by the bi-trapezoidal rule :

| 1.8 1, n+1

3 A+ 3 h™+ 3 h™ .
Substitution of wave solutions into the equations of this
scheme gives the value (5.3) for A, in addition to the
neutral values. Thus, the stability criterion and the pro-
perties of the physical solution are the same as with the
forward-backward scheme. Even though this Shuman-
Brown-Campana (SBC) scheme is a three level scheme,
time staggering of the grid is not possible because of the
averaging of the height values. Thus, the economy
accomplished by the SBC scheme is again equivalent
to that accomplished with leapfrog time differencing by
the Eliassen grid. The SBC scheme has somewhat larger
storage requirements than the forward-backward scheme.
However, it does permit the use of the leapfrog scheme
for the advection terms.

6. Implicit and semi-implicit schemes

The time step permitted by the economical explicit
schemes, twice that prescribed by the CFL criterion, is
still considerably shorter than that required for accurate
integration of the quasi-geostrophic motions. Even with
these schemes the time differencing error is still much less
than the space differencing error for typical current
atmospheric models. Thus, we consider implicit schemes
which are stable for any choice of time step. We shall
consider here only the simplest of the implicit schemes,
the trapezoidal rule. For brevity it will simply be called
the implicit scheme.

We shall first discuss the properties of the implicit
scheme applied to the system (4.8) in some detail, that
is, the case of pure gravity waves. Thus, we consider the
finite difference system

W= u”—gdr%(ﬁxhnﬁ- 5,&”“).

yitl= v"-gml(ayh”+ 6,;:”').

3 6.1)

1 +1
h"*'=h"~Hat 5"5*“ +5,,v)” + (qu + 6,»)” ]
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Substituting the wave solutions (4.10) we find three
solutions for A. One of these,
A=1, (6.2)

is again that associated with a neutral and stationary solu-
tion. The remaining two are

)= -—-—]I—(l—-—A i%u) 6.3)
o 1+34

Examination of (6.3) shows that it always gives ampli-
fication factors satisfying

IA|=1, 6.4

and so the scheme is unconditionally stable and neutral.
Using (6.3) and (4.17), we find for the relative phase
speed of the nonstationary solutions,

¢_VT—_) 6.5

c'

%l = FV_'I‘!_!Sngx+Y R

The numerical values given by (6. 5) for the physical mode
with 2\/ng = 5 are shown in Fig. 6.1. The time step
is chosen to be of the same order of magnitude as the
time steps that are currently used with implicit schemes

o \
7,
\
la* 0.6 ! l 0.2
08,4 % \I , {

L ll [ | 0.0

0 n/2

kd*
Figure 6.1 Relative phase speed of gravity waves, with implicit

time and centered space differencing, and Courant
number equal to 5.

in atmospheric models. The wave number region in
the figure is the same as in the earlier diagrams, Figs. 2.3
and 4.1. Comparing the isolines of the present figure
with those of Fig. 2.3, where the effect of space differenc-
ing alone was considered, shows that the effect of time
dlﬂ'erencmg on phasc speed is now not negligible. Implicit
time differencing is seen to result in a considerable retarda-
tion of gravity waves of the same order of magnitude as
that due to centered space differencing.

To apply an implicit method it is necessary to solve
the difference system for variables at level n 4+ 1.

With an ordinary oscillation equation, (2.7) in Chap-
ter II, this can be done very simply. For the system (6.1)
it is more complex. The quantities 5,u™*! and 8,»"*! can
be eliminated from the third equation by applying
operators 3. and J, to the first and second of these equa-
tions and substituting the results into the third equation.
This gives an equation for the height which can be solved
using a number of standard methods : the most popular
of these is the relaxation method which is discussed
later in this section.

Two methods are used to deal with the advection,
Coriolis, and other terms of the governing equations,
in atmospheric models. One of these, the splitting method,
will be discussed in the next section. The other is the
semi-implicit method. There is no advantage in using
an implicit method for these additional terms of the
governing equations. They are associated with slower
phase speeds, and should not require excessively small
time steps for linear stability when calculated explicitly.
Thus, they can be calculated by an explicit scheme. Since
the trapezoidal implicit scheme is a two level scheme
like the forward-backward scheme, it is convenient to
use the Adams-Bashforth scheme for this purpose.
Robert (1969) in a spectral model, and subsequently
Kwizak and Robert (1971) in a grid point model, chose,
however, to use the leapfrog scheme. We then need
variables at the middle of the time step used for the
implicit differencing, and, therefore, it has to be performed
over a time interval of 24t. However, the scheme is
now less economical for gravity waves since these steps
have to be made separately for each of the two time
levels stored in the leapfrog scheme. In return, we have
a differencing for the advection and other additional
terms that is neutral and more accurate than Adams-
Bashforth’s. Kwizak and Robert call this combined
scheme the semi-implicit scheme. It has been used for a
number of years in the Canadian operational model,
and is- becoming increasingly popular in some other
operational numerical prediction centres.

The usual procedure used for solving the semi-implicit
difference system for variables at time level n + 1 will
be illustrated for the shallow water equations. These
equations can be written in a compact form

du _ ok dv _ ok
g~ 8ox YA Hr=reg T4,
6.
i (6.6)

E‘—‘H?"‘" A*,

where A,, A, and A4, denote the terms that were omitted
in the system (4.8) describing the propagation of pure
gravity waves. When we use leapfrog differencing for
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these additional terms, and implicit differencing over a
time interval 24¢ for the gravity wave terms and centered
space differencing, (6.6) is replaced by

Wt =y g At (5, A" + 8 A Y) + 24t AL,
vl = et (B, A" + B, A" tY) + 241 AL, (6.7)

B*+Y = A" — HAL [(8u + 8,0 + (B.u + S,0)**1] +
+ 241 4;,.

We now apply the operator 3, to the first, and 8, to the
second of these equations, respectively, and add the

results. We introduce the notation
8;;h=08,(8;h) and B,k =3, (5, h).
We obtain

(Bou + W)™ = (8,u + 8, —
—gAt [(Bzz + ) A" + (8., + B,) A" ) +
+ 241 (8, Ay, + 8, A)".

Substituting the right-hand side into the third of Egs.
(6.7), and defining the “‘finite difference Laplacian” by

P*h = (8:; + 8,) h,
we find

APt = B2 HAL (§,u + §,v)" " +
+ gH(A:)B (”h"_l‘ + ?Eh”+l) +
+ 24t [A\—HAt (8, A, + 8, 4,)]".

Using, in addition, the definitions
Frl=hp"—2HAt 8u + 8,0 + gH (di)* k™,
G" =24t [A\—HA4t (5,4, + 3, 4,)]",

this can be written as

’!'”‘—-g”({.")’ ’2}]"H=P_l +G.. (68)
The terms have been arranged to show that at time level n
the right-hand side is known at all space grid points.
Once this equation has been solved for the values A"*!,
u"*! and v"*! can be obtained directly from the first and
second of Egs. (6.7). We now consider ways of solving
(6.8).

The quantity p* on the left side of (6.8) is an approxi-
mation to p*h. Using the notation of Fig. 6.2, it can
be written as

Figure 6.2 Stencil used to calculate the approximation p2h.

Vh =gy O+ hy+ hy + b= dhy).  (6.9)

Thus, (6.8) is a finite difference approximation to an
elliptic equation

p*h + ah + b(x,y) = 0.

To solve such an equation, it is necessary to know the
values of 4 (x, y) at the boundaries of the computation
region. For a numerical solution we write (6.8) at each
of the interior grid points where the variable 4 is carried.
In this way we obtain a system with one equation for
each interior grid point. There is one unknown for each
grid point. In each of the equations, except the equations
for points adjacent to the boundary, there are five of
these unknowns. There are no difficulties in principle
in solving such a system of linear equations, but, since
the number of equations is normally exceedingly large,
of the order of 1000 or more, it is not obvious how to
set about it.

The method usually used is the relaxation method.
This consists of the following steps.

@) An arbitrary guess is made for the field A"*l.
Usually the field of the preceding time step, A", is taken
as this first guess.

b) At each of the grid points the value 4"*! is changed
so as to satisfy the difference equation, in our case (6.8).
These changes can be made simultaneously at all grid
points (simultaneous or Richardson relaxation), or sequen-
tially, point by point (sequential or Liebmann relaxation).

¢) The preceding step is repeated as many times as
needed to make the change at every point less than some
preassigned small value.
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The relaxation method always converges. Experience
shows that the convergence is faster for sequential relaxa-
tion, and also if the changes calculated to satisfy the
equation exactly are multiplied by a factor having a value
between | and 2 (overrelaxation factor) before being added
on. For a particular problem the optimum value of this
overrelaxation factor can easily be found by numerical
experiments, in which the number of iterations required
is plotted as a function of the value of the overrelaxation
factor. This optimum value can be shown to be not much
less than 2. More details on the relaxation method can
be found in textbooks by Thompson (1961) and by
Haltiner (1971).

The algebraic system given by equations of the type
(6.8) can also be solved by direct methods (e.g. Kreiss
and Oliger, 1973, p. 54). Direct method can be more
efficient than the relaxation procedure; thus, they are
typically used when relaxation requires very large compu-
tation time, as may happen, for example, in convection
studies. When implicit schemes are used for simulation
or prediction of large scale atmospheric motions, the
time needed for relaxation is several times less than the
time needed for other steps of the integration procedure,
so that only a small fraction of the total computer time
can be saved by using a faster direct method. For that
reason the use of direct methods, requiring a larger
programming effort, is not popular in these models.

Generalization to the three-dimensional case of the
procedure for solving the semi-implicit system for
variables at level n 4- | outlined here is not quite trivial.
The reader is referred to the paper by Robert et al. (1972).

Implicit schemes were first used extensively in atmo-
spheric models by Marchuk (Mapuyk, 1957). With
the semi-implicit scheme it is also possible to construct
an economical grid analogous to the Eliassen grid for
the leapfrog scheme ; the appropriate space-time stagger-
ing of the variables was pointed out by Gerrity and
McPherson (1971). A semi-implicit scheme somewhat
different from the one outlined here has been developed
by Burridge, and is now used in the British operational
model (Burridge and Hayes, 1974). Implicit and semi-
implicit schemes are undoubtedly the most efficient
schemes used in atmospheric models. To achieve this
economy we have to put additional effort into solving
an elliptic equation. Furthermore they are associated
with an appreciable deceleration of gravity waves. Thus,
the implicit schemes do not seem suitable for the study
of details of the geostrophic adjustement process. How-
ever, this deceleration does not appear particularly
harmful for the simulation and prediction of the large-
scale quasi-geostrophic motions. For example, Kwizak
and Robert (1971) have found that barotropic 5-day

forecasts made with explicit differencing and time steps
of 10 min are almost identical to those made with semi-
implicit differencing and time steps of 60 min. Later
Robert et al. (1972) have calculated the differences be-
tween S5-day forecasts obtained using 30 and 60 min time
steps for a baroclinic 5-level semi-implicit model. These
differences were found to be insignificant compared to
other sources of error normally present in numerical
models. However, the model used for these experiments
did not include topography, surface friction, and other
physical processes; one might expect the deceleration
of gravity waves to have a more noticeable effect when
these physical processes (e.g. the release of latent heat)
are present, since then the gravity waves should be more
significant. On the other hand, the computation time
saved by the implicit differencing can be used to reduce
the grid size on the computation. This would decrease
the phase speed error for all the waves, including the
gravity waves.

7. The splitting or Marchuk method

The complexity of the system of hydrodynamic equa-
tions, that is, the simultaneous presence of a number of
physical factors, may cause some difficulties. One
difficulty was mentioned in the preceding section : if we
wanted to approximate (6.6) using a fully implicit scheme
we would obtain a system for the variables at level n 4 1
that is practically impossible to solve. Also since different
physical factors are present in this system we will nor-
mally wish to use different schemes for terms associated
with them. Thus, considering the linearized system with
advection and gravity wave terms,

du du oh _
5}- + C'a—x +8E.—0’

(7.1
5 e LB

at dx Ix

we might wish to use one scheme for the advection terms,
and another for the gravity wave terms — in much the
same way as was done within the semi-implicit scheme.
In such a situation, even though both of the schemes
to be used are stable considered one at a time, we cannot
be certain that the scheme obtained as a combination of
the two will also be stable. An example where it is not
was given by Kasahara (1965).

These problems can be avoided by using the splitting
method. The idea of this method is to construct schemes
for a complex system of equations so that within each
time step this system is split into a number of simpler
subsystems, which are then solved consecutively one at
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a time. In the case of (7.1), within a given time step, we
could first solve the system of advection equations

du du
5; + Ca = 0.
(7.2)
dh dh
(?f + ('-J; = 0.

Denote the provisional values 4" *1, A" *! obtained in this
way by u*, A*. Use these values at the beginning of the
time step for solving the remaining subsystem

du cM_O

= +g=—=0,

dt dx .3)
dh du

] +H-;)-;—- 0.

The values «™*!, h®*1 obtained after solving also this
other subsystem, are now taken as actual approximate
values of these variables at the level n 4 1. The procedure
is repeated in each following time step.

A solution obtained by the splitting method will repre-
sent a consistent approximation to the true solution.
This can be proved easily for a particular choice of
schemes for solving the subsystems. The approximate
values of the dependent variables then have to approach
the true values as the time step approaches zero.

To study the stability of schemes constructed by the
splitting method, we consider the example above. Denote
by A, and X, the values of A of the schemes chosen for the
numerical solution of subsystems (7.2) and (7.3),
respectively. Then, we have

u* = Re (A AP &%), h* = Re (A A" h e*),
and

u"*tl — Re (lb )La An a e{kx)’ A"+l = Re (lb l‘, AR ?”_,lkx)_

Therefore, we find,

1‘ = lb Z'at

and 3
|A] =[] [ Aa]-

Thus, if both of the schemes chosen for the solution of
subsystems (7.2) and (7.3) are stable, the combined
scheme constructed by the splitting method will also be
stable. This conclusion can be generalized for an arbi-
trary system of equations and number of subsystems.
When applying the splitting method, we do not neces-
sarily have to use equal time steps for each of the subsys-
tems. This may well be the main advantage of the

splitting method : we can choose a relatively long time
step for the subsystem governing a slow process, advection
in the present example, and then use a number of smaller
steps to calculate the faster process. Since the advection
process is the most expensive in computation time
within the primitive equations, significant economies can
be accomplished in this way. A disadvantage of the
method is that calculation of the effects of different
physical factors one at a time usually leads to an increase in
the truncation error. For example, Burridge and Hayes
(1974) suggest that the technique of splitting the governing
equations into advection and adjustment stages does not
allow time steps longer than 12 to 15 min if the time-
truncation is not to become significant.

The splitting method was first used in atmospheric
models by Marchuk (Mapiyk, 1967); thus, in mete-
orology it is also known as the Marchuk method. It
would appear that the splitting method is used for most
atmospheric models in the Soviet Union. The splitting
technique is used also in the British operational model
(Burridge and Hayes, 1974), and in a limited area model
by Lepas and his collaborators (Lepas et al., 1974).

8. Two-grid-interval noise

Unless we are using the lattice (C) shown in Fig. 2.1
we will always have a problem with two-grid-interval
waves. These are false stationary waves appearing as
neutral solutions of the difference equations for gravity
waves. When the Coriolis terms are also present, as
seen in Section 3, the two-grid-interval waves appear
with false low frequencies as pure inertia waves, or, with
lattice (D), as stationary waves.

A number of methods have been used to cope with this.
In many models dissipative schemes are used to give
maximum damping for the two-grid-interval wave, or
lateral diffusion is added with relatively large diffusion
coefficients. The appearance of excessive two-grid-
interval noise is thereby suppressed. However, instead
of attacking the consequences of inadequacies in a simula-
tion of a physical process, it is generally better to look
for a method that would achieve a physically correct
simulation of that process, and thus eliminate the cause
of the difficulty, One method this kind for dealing with
the two-grid-interval wave problem has been suggested
and used by Arakawa (1972). It consists of an intermittent
use of uncentered space differencing within the gravity
wave terms, performed alternately on opposite sides of
the central point.

Mesinger (1973) showed how two-grid-interval wave
noise could be prevented in some cases even by using cen-
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tered differencing ; this method will be outlined briefly
here. We consider the system of linearized gravity
wave equations

du o av | ok
aTEHET0 Hteg ="
(8.1
h
S +HT-v= 0.

Consider any two neighbouring height points for example
within the lattice (E). A height perturbation at one of
these points cannot affect the other point because there
is no velocity point in between ; this velocity is needed
to cause a height change at the other point through the
divergence term in the continuity equation. To circum-
vent this difficulty we can introduce auxiliary velocity
points midway between the height points. Velocity
components at these auxiliary points can be assumed equal
to an average of velocities at the two neighbouring velocity
points at the beginning of a time step, and the acceleration
contributions can then be evaluated and added to these
initial values to obtain components at the middle or at
the end of the time step. Only the velocity components
and accelerations along directions joining the two height
points are needed, and these accelerations can be calcu-
lated using the height values at the two points. The
resulting velocity components can then be used for a more
accurate calculation of the divergence term in the conti-
nuity equation. In this way schemes are obtained in
which a height perturbation at a single grid point is
propagated by gravity waves to all the other height grid
points. Therefore there can be no grid-splitting and two
grid-interval noise in the height field. Since a velocity
perturbation can propagate as a gravity wave only by
exciting height perturbations, the procedure will prevent
false two-grid-interval noise in all the variables.

We shall illustrate this procedure using the implicit
scheme, (6.1). The velocity components at regular
velocity points are computed in the same way as before, so
the first two equations of that system remain unchanged.
To calculate the velocity divergence in the continuity
equation we define auxiliary velocity points midway
between the neighbouring height points, as shown by the
circled numbers 5, 6, 7 and 8 in Fig. 8.1. Using the
system x’, y" shown in this figure, components u’ are
needed at points 5 and 7, and components v’ at points 6
and 8. At the beginning of the time step 4t these compo-
nents are obtained by

Stencil used to denote the height and velocity grid-

Figure 8.1 . 1
point values surrounding a height point.

space-averaging, that is

PP eV T

n_£{'—y
u

An overbar denotes a two-point average taken along the
direction indicated following the bar sign. Acceleration
contributions are added to these initial values to obtain
values at the end of the time step,

u"'”:u"—g.df [5 A" +§ A"

VR v gl 3 (6, 8" + 8,87,

The velocity divergence in the continuity equation can
now be approximated by

:_I! (6 u+8,v+ % (8, 1" + 8y v7),

giving equal weight to all eight directions of the lattice.
In this way the implicit approximation to the continuity
equation may be obtained as

n+l

h" = h"-Hd1 (5,u+38,v)" +
(8.2)

+3 gHIaR (PRA" + PFA*Y).
Here the velocity components at level n + 1 have already
been eliminated using the first two of Eqgs. (6.1), and
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2, _ |1
70h=mx (8.3)

XUy +hy+ hy+ hy+ 2 (hs+ hg + hy + hgl-12 k).

This is again a finite difference approximation to p2, but
now it is calculated using the height values of nine neigh-
bouring height points.

Comparing this scheme with the standard implicit
scheme of Section 6, the only modification is that this
nine-point Laplacian has replaced the five-point Lapla-
cian (6.9) in the continuity equation. This allows
propagation of gravity waves between all height points
of the grid, thus admitting no false space noise in the
height field. A more detailed analysis of the properties
of the scheme can be found in Mesinger (1973). The
modification, for example, has no effect on the uncondi-
tional stability of the implicit scheme ; however, instead
of being neutral for all waves, the scheme now damps
shorter waves to some extent. The modified scheme
has a smaller truncation error than the unmodified
scheme .

Analogous modifications of some other schemes have
been discussed in papers by Janji¢ (1974) and Mesinger
(1974). All of these papers show that the modified
schemes are strikingly superior in the case of a stationary
circular vortex, forced at a single height grid point. A
note by Mesinger and Janji¢ (1974) provides, further-
more, a dramatic illustration of the advantages of the
proposed method in the case of a limited area model,
requiring lateral boundary conditions to be prescribed.
In a 5-level model using the unmodified forward-back-
ward scheme, intense short-wave noise was generated
at the boundaries of the region, a problem noticed also
by earlier investigators (e.g. Miller et al., 1972 ; Krishna-
murti et al., 1973). With the scheme modified along
these lines, however, there were no difficulties due to the
prescribed boundary conditions, even with no lateral
diffusion in the model.

It is important to be aware that this method is not
attempting to improve the calculation of short gravity
waves of wave lengths close to two grid intervals. At
this scale the finite difference representation is very poor,
and significant improvements in accuracy can hardly
be expected. The problem is that gravity waves, with
longer wave lengths can propagate independently on
individual (C) type subgrids, and thus erroneously
appear to have wave lengths close to two grid intervals.
Thus, we are confronted with a kind of aliasing error.
The proposed method enables these waves to appear
with wave lengths close to their physical value instead
in the noise region with wave lengths close to two grid
intervals.

9. Time noise and time filtering

In addition to the appearance of spurious short-wave
noise in space, spurious short-wave noise in time, that is,
high frequency noise can appear in numerical models.

One mechanism causing this when the leapfrog scheme
is used for nonlinear equations is the separation of
solutions at alternate time steps, generating two-grid-
interval noise in time. Such separation is illustrated
in a paper by Lilly (1965, p. 23).

High frequency noise appears in atmospheric models
also as a result of difficulties in observing initial condi-
tions representative of the large scale atmospheric
motions. The observed initial conditions contain instru-
mental errors, are influenced by meso and small scale
motions, are not known at grid points of the model, and,
finally, are completely absent over relatively large areas
of the globe. As a result of all of these factors, if initial
grid point values are interpolated directly from the
observed data the numerical forecasts will contain
spurious gravity waves of unrealistically large amplitudes.

In the early successful integrations of the primitive
equations these problems were partially by-passed by
obtaining the initial winds from the initial geopotential
fields as a solution of the balance equation — the equation
obtained by assuming the initial velocity divergence and
its time derivative to be equal to zero. Initial conditions
prepared in this way (e.g. Haltiner, 1971) prevent exces-
sive high-frequency gravity wave noise.

It is now generally accepted that this is not the best
way of preparing the initial conditions. First, the wind
data are not used when solving the balance equation, and
some information is lost. It has also been shown (e.g.
Phillips, 1960b; Winninghoff, 1968) that the presence
of a realistic initial divergent wind field should have a
beneficial effect on the forecast. Finally, an increasing
fraction of the observations are now continuous, and in
time not obtained at specific times. The methods being
used to extract the maximum information from this
type of data rely more on running a prediction model
to adjust the data in space and time (e.g. Bengtsson,
1975). In such an integration relatively intense high
frequency noise is generated.

The first of the mechanisms mentioned here, separation
of solutions at alternate time steps, has to be suppressed
in some way — otherwise it may lead to a complete
breakdown of the integration. One method that is used
for this purpose is an intermittent step made with a
two level scheme. A weakness of such a procedure is
that the choice of the solution that is eliminated is arbi-

trary.
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Experience shows that the noise generated by assi-
milation of the observed data typically dies out to an
acceptable level in about 24 hours of simulated time
due to geostrophic adjustment. However, it may be
desirable to accelerate this adjustment by appropriate
numerical techniques. The Matsuno scheme can be
used for this purpose.

Another method that can be used to increase the
damping of high frequency noise in atmospheric models
is time filtering originally proposed by Roberts (1966).
To apply this at least three consecutive values of the
function to be filtered are needed. We shall consider the
simplest case where this minimum number of three
values is used. It suffices to consider one function only,
which we assume to be a solution of the oscillation
equation. Thus, we consider the function

U(r) = U(0) e™, 9.1
where the values U (t—4r), U(t) and U (t + At) are
known.

We shall first examine the effect of changing only the
middle of these three values using the relation

UG)= U(:)+%s x
x[U (1-41)-200) + Ut + 41)],

known as the centered filter. The overbar now denotes
the filtered value of a function, and S is the filter parameter.
The expression within the square bracket in (9.2) is pro-
portional to the simplest approximation to the second
derivative in time; thus, for sufficiently small positive
values of S application of the filter (9.2) will decrease the
curvature in a graph of the three values of U (¢).

For a quantitative analysis of the effect of the filter
we define

9.2

U(t)=RU@), 9.3)
where the complex factor R is called the response of the
filter. When this is substituted into (9.2) and we use
(9.1), we obtain

R = 1—5 (1 —cos wdt). 9.4

It is convenient to define R =|R|e®.

We can then say that the phase change & resulting from
the centered filter is zero, and that within the CFL
stability criterion and for small positive values of S the
amplitude factor | R | exerts a damping effect increasing
with increasing frequencies.

When, however, a filter is continually applied during a
numerical integration, the value U (t—d4t) has already

been changed prior to changing U (). It is then appro-
priate to consider the filter
T =U()+55x
2 ©.5)
XU (t-40)-2041) + UGt + 41)).

Asselin (1972) calls this the basic time filter. A procedure
like the one used in deriving (9.4) now gives

(2-5)* +25%(1- cos wdt) it
R = e 5
(2-8)+ 45 (1-cos wdr)

Thus, there is now a phase change that is different from
zero ; however, it is small for small values of wdr. The
amplitude factor is not much different from that of the
centered filter for small values of S. More details can
be found in the paper by Asselin.

(9.6)

An analysis of the effect of the time filter for some
particular choices of time differencing schemes — the
leapfrog, implicit and semi-implicit schemes — can also
be found in the paper by Asselin. We find, for example,
that the time filter in conjunction with the leapfrog
scheme can give a procedure damping the high frequencies
in a more selective way than the Matsuno scheme —
less for low frequencies and more for high frequencies.
Since the computer time needed for application of the
filter is relatively small, this means that one obtains a
better result with only about half of the computer time.
However, the application of the filter does require the
storage of the time dependent variables at three time
levels, that is, at one level more than with the standard
leapfrog scheme.

Using an analogous approach one can analyze the
effect of smoothing and filtering in space. The reader is
referred to a review article by Shapiro (1970) or the
textbook by Haltiner (1971). It is, however, not obvious
that there are physical or computational reasons for
using two-dimensional space filtering in atmospheric
models.

10. Dissipation in numerical schemes

In concluding this chapter we add, following Arakawa
(1970), a few remarks regarding the role of dissipation
that may be inherent in numerical schemes. The discus-
sion of the preceding chapter shows that the use of
dissipative schemes for the advection process should be
avoided — provided care is taken to avoid a false cascade
of energy to short waves. However, such short waves
can still be generated as a result of false reflections at
boundaries on the down-stream side of the region (Mat-
suno, 1966c), or false reflections at sudden jumps in the
grid size, or at places where coefficients change rapidly.
The use of dissipative advection schemes at those places,
and only at those places, is justified.
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The situation is different when we arc now considering
the gravity-inertia wave terms, governing the geostrophic
adjustment process. This process is a result of the dis-
persion of high frequency waves. Use of a frequency-
selective dissipative scheme will make these high fre-
quency waves damp out at a faster rate, and thus acce-
lerate the adjustment process, although the actual phy-
sical process is dispersive rather than dissipative. This
gives an effect much the same as that of time filtering.
Therefore, if we are only interested in the final result of the
geostrophic adjustment process, dissipation in the
gravity-inertia wave terms may be helpful, especially
when the high frequency waves are predominantly
unphysical. It we are interested in the high frequency
waves themselves, the use of a dissipative scheme must,
of course, be avoided.
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