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Abstract

Four sets of downscaling simulations based on the Eta Regional Climate Model forced by two glob-
al climate models, the HadGEM2-ES and the MIROC5, and two RCP scenarios—8.5 and 4.5, have
been carried out. The objective of this work is to assess the climate change over South America
based on the Eta simulations. The future changes are shown in timeslices of 30 years: 2011-2040;
2041-2070 and 2071-2100. The climate change response of the Eta simulations nested in Had-
GEM2-ES is larger than the Eta nested in MIROC5. Major warming area is located in the central part
of Brazil. In austral summer, the reduction of precipitation in the central part and the increase in
the southeastern part of the continent are common changes in these simulations, while the Eta-
HadGEM2-ES intensifies the decrease of precipitation in central Brazil, the Eta-MIROC5 expands
the area of increase of precipitation in southern Brazil toward the end of the century. In austral
winter, precipitation decrease is found in the northern part of South America and in most of Cen-
tral America, whereas the reduction in southeastern South America is limited to near coastal re-
gion. The time series of temperatures show that warming trends are larger in the Eta-HadGEM2-ES
than in the Eta-MIROC5 simulations. Heavier precipitation rates are projected in the Central-South
of Brazil toward the end of the century. Increase in the length of consecutive dry days (CDD) in
Northeast of Brazil and the decrease of consecutive wet days (CWD) in the Amazon region are
common features in these simulations.
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Eta Model

1. Introduction

Assessment of the impacts of climate change in various socio-economic sectors is an activity necessary for
planning at long range. The impacts and vulnerability are local scale issues that require more detailed climate
information. Global Climate Models (GCMs) are the major tool to provide information of climate change under
different greenhouse gases emission scenarios. However, the grid sizes of these models are about 200 - 100 km.
Local features, such as topography, river basins, and coastlines may not be sufficiently captured in the simula-
tions carried out by those GCMs. The regional climate models (RCMs) play the important role of downscaling
the global climate simulations to smaller grid sizes in the area of interest where the impact studies can be carried
out. The RCMs simulations with grid sizes of about a few tens of kilometers are a compromise between resolu-
tion and the long-term integration.

In South America, some RCM runs have adopted the Special Report on Emission Scenarios-SRES [1] [2]
emission scenarios to study the impacts of climate change over South America. Reference [3] compared the cli-
matic changes in A2 and B2, a pessimist and an optimistic scenario, using RegCM3. Reference [4] assessed the
future climate under the A1B scenario using the Eta model as the RCM [5] [6], driven by four members of the
HadCM3 simulations. These works share the common result of reduction of precipitation in the tropical areas of
the continent, and increase of precipitation in the area known as Southeast South America (SESA), that extends
from southern Brazil, Uruguay, Paraguay up to northern Argentina. The differences of the climatic changes in
different scenarios were mostly differences in magnitude of the changes, with little variation on the location of
the changes.

The Brazilian Second National Communication to the United Nations Framework Convention on Climate
Change (UNFCCC) was mostly based on the simulations using the SRES scenarios based on the IPCC 4™ As-
sessment Report (AR4). The recently issued IPCC 5" Assessment Report (AR5) is based on the Representative
Concentration Pathway scenarios, RCP 8.5, 6, 4.5, and 2.6 Wm 2 radiative forcing scenarios, which correspond
to the range from pessimist to the optimistic emission scenarios. The GCMs used in the AR5, in general, have
shown improvement over the previous GCMs used in AR4, in particular the simulations of precipitation over the
tropical areas [7].

In support of the Brazilian Third National Communication to the UNFCCC and of various studies of strategic
themes, four sets of downscaling simulations based on the Eta RCM forced by two RCP scenarios—RCP 8.5
and RCP 4.5, and two GCMs, the HadGEM2-ES and the MIROCS, have been carried out. Evaluations of the
nested regional simulations of the present climate against observations have been performed in a companion
paper [8].

The objective of this work is to assess the climate change over South America based on the Eta model simula-
tions nested in two GCMs and two RCPs scenarios. The assessment is carried out in terms of the annual cycle,
frequency distribution, and some climatic extreme indicators.

2. Data and Methodology
2.1. The Scenarios

In the AR4 [9], the emission scenarios were built based on the storylines that were grouped into a more eco-
nomically concerned development or a more environmental and sustainable development, and into a more glo-
balized world or a more regionally developing world. The economic models followed various lines of economic
development. In the AR5 [10], the scenarios are based on total anthropogenic radiative forcings at the end of the
21 century. Economic models can take different paths to reach four different radiative forcings that are equiva-
lent to different concentration paths of the greenhouse gases, the so-called RCPs. The four different scenarios
are labeled as: RCP 8.5, RCP 6.0, RCP 4.5 and RCP 2.6, which correspond to radiative forcings of 8.5 Wm 2,
6.0 Wm2, 4.5 Wm 2, and 2.6 Wm 2, respectively. The first RCP is the most pessimistic and results in a global
average warming at the end of the 21% century of about 4°C, whereas the last RCP is the most optimistic and
corresponds to a global warming of about 1°C. The radiative forcing in RCP 8.5 corresponds approximately to
A2 scenario in AR4, it grows almost linearly during the 21% century, but with higher radiative forcing values.
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On the other hand, the RCP 4.5 corresponds approximately to B1 scenario in AR4, the radiative forcing increas-
es almost linearly up to about the year 2060 and then slows down the increase rate until the end of the century
where it stabilizes. In this work, the results are shown for RCP 8.5 and RCP 4.5 scenarios.

2.2. The Models

Two GCMs are adopted for downscaling: the HadGEM2-ES and MIROCS5. The HadGEM2-ES is a global cli-
mate model of earth system category developed by the Hadley Centre [11] [12]. The resolution is about 1.875
degrees in longitude and 1.275 degrees in latitude, and 38 levels in the atmosphere. It has dynamic vegetation
scheme with carbon cycle representation. The MIROCS5 [13] is a Japanese cooperatively developed coupled
ocean-atmosphere model of resolution of about 150 km in horizontal and 40 levels in vertical. A list of major
characteristics and references of these two models can be found in the Table 9. A.1in [7].

Regional Eta model has been adapted to run for long-term integrations [4]-[6]. The dynamics of the model is
developed in the eta vertical coordinate [14], which is more suitable to operate in regions of steep orography
such as the Andes Cordillera in South America and Central America. Characteristics of the models are based on
the upgraded version described in [15] and in a companion paper [8]. The model updates the equivalent CO,
concentration at every 3 years. Vegetation greenness varies monthly, but same type of vegetation is kept during
the integration period. The model does not have ocean dynamics. The sea surface temperature is taken from each
global model output and it is updated daily in the Regional Eta model. Initial soil moisture and soil temperature
come from the respective GCMs. Update of soil conditions follows the NOAH land surface scheme [16]. Lateral
boundaries are updated with global model state variables at every 6-hour interval. The regional model resolution
is approximately 20 km in the horizontal and 38 layers in the vertical. The top of the model is at 25 hPa. Model
domain encompasses most of South America and Central America and part of adjacent oceans (Figure 1).
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Figure 1. Model domain. Three major Brazilian regions are highlighted in the re-
sults: North (NO-green), Northeast (NE-red), and Central-South (CS-blue) Brazil.
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3. Results

Results are shown in future timeslices of 30 years: 2011-2040, 2041-2070 and 2071-2100. Climate changes are
assessed with respect to the baseline period, 1961-1990, considered as the present climate. The assessment is
primarily based on temperature and precipitation displayed in seasonal mean changes, annual cycle, time series,
frequency distribution and climatic extreme indicators. Discussions for the three major Brazilian regions, North
(NO), Northeast (NE), and the Central-South (CS) regions (Figure 1) are highlighted in the results. The down-
scaling simulations are referred to as Eta-HadGEM when the Eta model is driven by HadGEM2-ES, and Eta-
MIROCS5 when driven by MIROCS.

3.1. Seasonal Mean Changes

e 2-mtemperature

The mean change of 2-m temperature projected by the Eta-HadGEM and Eta-MIROCS5 simulations, for the
three timeslices: 2011-2040, 2041-2070 and 2071-2100, and for the two emission scenarios: RCP 4.5 and RCP
8.5 are shown in Figure 2 for austral summer, December-January-February (DJF), and in Figure 3 for austral
winter, June-July-August (JJA). Composites of the upper and lower ranges of the temperature changes among
the four projections are included in the two rightmost columns. The Eta-HadGEM is clearly more sensitive to
the increase of greenhouse gases in comparison to the Eta-MIROCS5 simulations. In austral summer, while, in
the near term, 2011-2040, the Eta-MIROCS5 reaches warming of about 1.5°C and 2°C, the Eta-HadGEM simula-
tions warming reaches about 4°C. The most sensitive area, where major warming occurs, is located in Central
and Southeast Brazil, a highly dense populated area. As the equivalent CO, concentration increases through the
years, this major warming area expands northward and reaches the tropical areas such as NO region. In the last
timeslice, 2071-2100, maxima of temperature changes have reached warming of about 9°C in Eta-HadGEM
scenario RCP 8.5, taking most of the South America continent, and includes Central America. Largest warming
area occurs over the continent. In austral winter, the temperature changes are of similar magnitude, but slightly
larger than in summer. Some differences of changes between the two seasons can be noticed, such as around
northern Argentina and Paraguay where the minimum warming is projected over the continent in JJA. This is a
preferential area of frontogenesis during wintertime [17]. This warming in northern Argentina favours more in-
tense frontogenesis development.
e Precipitation

The mean change of precipitation projected by the Eta-HadGEM and Eta-MIROCS5 simulations, for the three
timeslices: 2011-2040, 2041-2070, and 2071-2100, and for the two emission scenarios: RCP 4.5 and RCP 8.5
are shown in Figure 4 for austral summer, DJF, and in Figure 5 for austral winter, JJA. Similar to the tempera-
tures, composites of the upper and lower ranges of the precipitation changes among the four projections are in-
cluded in the two rightmost columns. In DJF, the major reduction of precipitation is found in a large area that
extends from NO region to CS region, an area generally occupied by the South Atlantic Convergence Zone
(SACZ); this is the main meteorological system that accumulates large amounts of precipitation in summer in
the continent. The change suggests the reduction in the frequency of occurrence of SACZ or reduction in the ac-
tivity of the SACZ in producing precipitation. This reduction is in agreement with the intensification of the sub-
tropical high pressure and winds over the continent, which may block the passage of cold fronts moving toward
the lower latitudes. In comparison with previous Eta-HadCM3 A1B projections [4], this area of reduction of
precipitation has expanded farther southward reaching the region south of Brazil. Although, this sign of reduc-
tion of precipitation occurs in all four nested simulations, in both emission scenarios of the Eta-HadGEM simu-
lations, this reduction intensifies toward the end of the century. In these simulations, the region of maximum re-
duction of precipitation is positioned in central and part of Southeast of Brazil, not as much in the Amazon or
Northeast of Brazil as in [4]. In summer, the northern part of Northeast of Brazil displays increase in precipita-
tion in both RCP scenarios of the Eta-MIROCS and in RCP 4.5 of the Eta-HadGEM simulations, whereas only
the Eta-HadGEM RCP 8.5 shows reduction of precipitation in all Northeast of Brazil. The precipitation regime
in the northern part of Northeast Brazil is generally dependent on the position of the Intertropical Convergence
Zone (ITCZ). In Eta-MIROCS simulations, the precipitation band associate with ITCZ displaces southward
causing increase in precipitation in the northern part of the Northeast of Brazil region, whereas in the Eta-Had-
GEM no clear displacement occurs, but overall precipitation reduction in the band. The reduction of precipita-
tion in southern Chile in all future timeslices is a feature shared in these simulations.
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Figure 2. Difference of DJF mean 2-m temperature (°C), between future and present (1961-1990) periods. Columns
from left to right: 1—RCP 4.5 Eta-HadGEM; 2—RCP 8.5 Eta-HadGEM; 3—RCP 4.5 Eta-MIROC5; 4—RCP 8.5
Eta-MIROC5; 5—Composite of upper range of the changes; and 6—composite of lower range of the changes. Fu-
ture periods are 2011-2040 (top row), 2041-2070 (middle row), and 2071-2100 (bottom row).
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Figure 3. Difference of JJA mean 2-m temperature (°C), between future and present (1961-1990) periods. Columns
from left to right: 1—RCP 4.5 Eta-HadGEM; 2—RCP 8.5 Eta-HadGEM; 3—RCP 4.5 Eta-MIROC5; 4—RCP 8.5
Eta-MIROC5; 5—Composite of upper range of the changes; and 6—composite of lower range of the changes. Fu-

ture periods are 2011-2040 (top row), 2041-2070 (middle row), and 2071-2100 (bottom row).
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Figure 4. Difference of DJF mean precipitation (mm/day), between future and present (1961-1990) periods. Col-
umns from left to right: 1—RCP 4.5 Eta-HadGEM; 2—RCP 8.5 Eta-HadGEM; 3—RCP 4.5 Eta-MIROC5; 4—RCP
8.5 Eta-MIROCS5; 5—Composite of maximum changes; and 6—composite of minimum changes. Future periods are
2011-2040 (top row), 2041-2070 (middle row), and 2071-2100 (bottom row).
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Figure 5. Difference of JJA mean precipitation (mm/day), between future and present (1961-1990) periods.
Columns from left to right: 1—RCP 4.5 Eta-HadGEM; 2—RCP 8.5 Eta-HadGEM; 3—RCP 4.5 Eta-MIROCS;
4—RCP 8.5 Eta-MIROCS5; 5—Composite of maximum changes; and 6—composite of minimum changes. Fu-
ture periods are 2011-2040 (top row), 2041-2070 (middle row), and 2071-2100 (bottom row).
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In winter, in JJA, with the migration of ITCZ band toward northern latitudes (Figure 5), the reduction in pre-
cipitation occurs in the northern part of the continent, and it extends over Central America and Caribbean region.
While in the eastern Pacific, the precipitation band associated with the ITCZ is displaced southward in all simu-
lations, in the Atlantic, the band has moved away from the coast and causes a reduction in the precipitation
along the eastern coast of Northeast Brazil. In addition, in JJA, precipitation is projected to increase in southeast
South America, but limited to areas near the coastal, and is projected to reduce in southern Chile.

3.2. Annual Cycle

e 2-m temperature

The annual cycle of temperature is shown for RCP 4.5 (Figures 6(a)-(c)) and RCP 8.5 (Figures 6(d)-(f)) for
three regions in Brazil: NO, NE and CS. The present climate simulation is also plotted for comparison of the
changes. Despite some lags of phase of 1 month between the Eta-HadGEM and Eta-MIROCS, the amplitude of
the annual cyclesis approximately maintained along the year in each timeslice. Therefore, the increase in tem-
perature from the present to the each future timeslice is kept about the same magnitude along the year, but with
small increase in the amplitude of the temperature cycle in the months around October and November. Larger
warming occurs in RCP8.5 as expected in higher equivalent CO, concentrations. The Eta-HadGEM produces
warming values larger than Eta-MIROCS in all three regions and periods. Larger warming is found in NO re-
gion, in RCP 8.5, which can reach about 8°C on average, whereas the smallest warming is found in NE region in
RCP 4.5 with warming of about 1.5°C. In RCP 4.5, the largest changes in temperature occur between the present
and the first period, 2011-2040, whereas in the RCP 8.5 the largest warming occurs between 2041-2070 and
2071-2100. No clear change of phase of the annual cycle is suggested in the projections of temperature for these
regions.
e Precipitation

The annual cycle of precipitation shows that the Eta simulations driven by MIROCS5 produces more precipita-
tion than the Eta driven by HadGEM2-ES during the rainy season, and generally less during the dry season,
therefore the Eta-MIROCS exhibits a larger amplitude of the annual cycle of precipitation for both RCPs in all
three regions (Figure 7). Precipitation reduction is generally found in all months and in all regions, except in the
CS region, during the transition season of September-October-November (SON), when the Eta-HadGEM re-
duces precipitation, the Eta-MIROCS increases the precipitation respect to present climate (Figures 7(e)-(f)). In
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addition, the Eta-HadGEM simulations show an increase of precipitation during dry season (JJA) in CS region,
which modifies the annual cycle. Most of this modification is caused by the increase of precipitation in southern
part of Brazil. These mixed signals of precipitation change in the CS region reveal large uncertainty in the as-
sessment. Despite the increase of precipitation shown in the northern part of the NE region (Figure 4) during the
DJF, the projected annual cycle shows that the reduction of precipitation dominates in the region in all months.
Both Eta-HadGEM and Eta-MIROC5 simulations in RCP 8.5 scenario suggest extending the length of the dry
season in NE.

3.3. Time Series

The time series of 2-m temperature simulated by the Eta-HadGEM and Eta-MIROCS5, from 1961 until 2100, for
DJF and JJA, and mean over the three regions (NO, NE and CS) are shown in Figure 8. Both Eta-HadGEM and
Eta-MIROCS5 simulations underestimate temperatures in the present climate, but the Eta-HadGEM is closer to
the observations in both summer and in winter seasons. Despite the differences in the individual model biases, in
the future, the four simulations exhibit warming trends in the three regions. In addition, toward the end of the
21% century, the Eta-HadGEM simulations in RCP 8.5 scenario show more sensitivity to the increase of CO, as
the temperature curve exhibits higher rate of warming with respect to RCP 4.5 than the Eta-MIROC5 RCP 8.5
warming with respect to its RCP 4.5 simulation. The interannual variability of DJF temperature in NO and NE
regions is larger in Eta-MIROCS than in the Eta-HadGEM simulations. Clearly, the interannual variability of
temperature increases in the future.

The time series of precipitation, for the two emission scenarios, in DJF and JJA, are shown in Figure 9. In
general, for precipitation, the Eta-MIROCS5 simulation is closer to observations than the Eta-HadGEM for the
present climate period. The simulations from Eta-HadGEM underestimate precipitation in all three regions and
in both seasons. In the future, there is no clear trend in the area averaged precipitation, in some periods the curve
exhibits increase and in other periods decrease. During summer, in DJF, the time series show trend for reduction
of precipitation in all regions in both emission scenarios, RCP 8.5 and RCP 4.5. During winter, the simulations
show agreement with a small increase of precipitation in CS region and a small reduction in the NO region.

3.4. Frequency Distribution

The frequency distributions of daily mean temperatures for the three regions are shown in Figure 10. The fre-
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Figure 8. Mean temperature (°C) yearly from 1961 until 2100, for RCP 4.5 (thin lines) and RCP 8.5 (thick lines) for DJF
(top row) and JJA (bottom row) in NO (left), NE (middle), and CS (right column) regions.
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Figure 9. Mean precipitation (mm/day) yearly from 1961 until 2100, for RCP 4.5 (thin lines) and RCP 8.5 (thick lines) for
DJF (top row) and JJA (bottom row) in NO (left), NE (middle), and CS (right column) regions.

quency is plotted in logarithmic axis in order to make visible the extreme values of the distribution. The histori-
cal timeslice refers to the 1961-1990 period. The narrow distribution in NO and NE reflects the smaller variabil-
ity of the tropical region, whereas the broader distribution in CS reveals the larger variability of the subtropics.
The displacement of the peaks at the most frequent daily temperatures toward higher values by about 3°C in the
RCP 4.5, and about 6°C in the RCP 8.5, occurs in all three regions. The distribution curves follow this dis-
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Figure 10. Frequency distribution (%) of daily mean temperature ("C), for RCP 4.5 (top row) and RCP 8.5 (bottom row), for
NO (left), NE (middle), and CS (right column) regions.

placement, except in NE that includes colder daily temperature events at the last timeslice. The distribution of
the Eta-HadGEM reaches higher temperature values than the Eta-MIROCS5 at the last timeslice, between 2071-
2100.

The frequency distributions of daily-accumulated precipitation for the three regions are shown in Figure 11.
The linear-log axis is also applied to the precipitation distribution curves to help stand out the heavier precipita-
tion rates which are much less frequent than weak precipitation rates. The frequency distribution of Eta-
MIROCS5 simulations produce more events of heavier precipitation than the Eta-HadGEM. In the RCP 4.5, little
impact is noticed on the frequency distribution of Eta-HadGEM precipitation rates in the tropical regions of NO
and NE, but in the subtropical CS region, the Eta-HadGEM simulations exhibit more precipitation impacts with
increase of frequency of heavy rains toward the end of the century. In the RCP8.5, the changes in the frequency
distribution of precipitation rates are much more evident in all three regions. Heavier precipitation rates are at-
tained in the first and middle timeslices, 2011-2040 and 2041-2070, in NE and CS regions. Despite the general
predominant reduction of precipitation in the three regions shown during the rainy season, heavy precipitation
events become more frequent in the future timeslices.

3.5. Climatic Extreme Indicators

Four climatic extreme indicators based on daily precipitation are calculated for the downscaling projections: the
total annual precipitation (PRCPTOT), the amount of precipitation from days that exceeded the 95" percentile of
daily precipitation (R95p), the annual maximum consecutive dry days (CDD), and the annual maximum consec-
utive wet days (CWD). These indicators can suggest the changes in the characteristics of the total daily precipi-
tation. Differences between the mean indicator at each future timeslice and mean indicator in the present climate
timeslice (1961-1990) are shown in Figure 12, for the upper range and the lower range of changes among the
four simulations of the climatic indicators, for the three future timeslices. In the figures, the patterns in red indi-
cate drier conditions and in blue, wetter conditions.

The composite of the lower range of the change of PRCPTOT indicator shows a decrease in annual rainfall
during the 21* century in most of the Amazon region and Southeast of Brazil. In those regions, the total annual
precipitation can reduce in about 700 mm, with respect to the present climate by the end of the century. An in-
crease in the total annual rainfall (blue areas) occurs over the southern part of South America and reaches an
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Figure 11. Frequency distribution (%) of daily precipitation (mm/day), for RCP 4.5 (top row) and RCP 8.5 (bottom row), for
NO (left), NE (middle) and CS (right column) regions.

increase over 500 mm by the end of the century. This result agrees with [18] using RCP 4.5 scenario, where the
50" percentile of the model ensemble projects a drier climate in the NO and NE regions of Brazil and a wetter
climate in the southeastern South America (SESA) in the future. The increase of PRCPTOT in the northern part
of NE is also shown in these projections.

The change of heavy precipitation (R95p) indicator shows a small reduction in the amount of extreme preci-
pitation rates over part of the Amazon, in central and Southeast of Brazil in all three timeslices. This reduction in
the accumulated precipitation events is due to the increase toward the end of the century of the value of the 95"
percentile of the daily precipitation rate. On the other hand, the increase of R95p indicator with respect to
present climate occurs over SESA. The change grows larger toward the end of the 21% century. These changes
of a drier climate in the North and Northeast of Brazil and a wetter climate in SESA are similar to the changes
found by [19] using AR4 scenarios.

The composite of the upper range of changes of CDD indicator highlights an increase of consecutive dry days
mainly over the Northeast of Brazil, where a semi-arid area is already present. This drier condition intensifies
toward the end of the century. This region is also identified as a hotspot region in terms of water resources [20].
This result is in agreement with [19] [21]. Decrease in CDD is considered in the lower range composites, and the
areas of decreasing CDDs are found in the central Argentina in the frontogenetical region, and in all three time-
slices. The change in the CWD indicator shows a decrease of the consecutive wet days with respect to the
present climate. This change is projected mainly in the Amazon region. Positive changes of CWD hardly occurs
in the continent, not even in SESA were a wetter climate is projected.

4. Conclusions

The Eta RCM is applied to generate four downscaling simulations of climate change. Two GCMs, the Had-
GEM2-ES and the MIROCS, and two AR5 IPCC scenarios, RCP 4.5 and RCP 8.5, force the simulations. The
objective of this work is to assess the climate change over South America reproduced by these downscaling si-
mulations.

Warming is projected in the entire continent, with larger amplitude in the Eta forced by HadGEM2-ES RCP
8.5 scenario. The warming starts in the central and southeastern Brazil and progresses strongly toward the
northern part of the continent. Major change in precipitation is the reduction in Southeast of Brazil. Both Eta
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Figure 12. Lower and Upper ranges of change of the climatic extreme indicators: PRCPTOT (mm), R95p (mm), CDD
(days), and CWD (days) in three timeslices.

simulations driven by HadGEM2-ES and Eta driven by MIROCS intensify the reduction of precipitation toward
the end of the century. The region between the South and Southeast of Brazil exhibits the most mixed signs of
precipitation changes. The northern part of Northeast of Brazil shows positive precipitation change with respect
to 1961-1990 period in three simulations, but negative change in the RCP 8.5 Eta-HadGEM scenario. The fre-
quency distributions of temperature and precipitation show the inclusion of extreme higher values as the time-
slices advance toward the end of the 21* century. Events of extreme heavy rainfall become more frequent in the
southeastern South America area and a reduction of heavy rainfall rate is found in the area of annual total preci-
pitation reduction.

These simulations attempt to contribute to the assessment of impacts of climate change in different economic
sectors. Generally, socio-economic impacts have local or regional scale, which makes the downscaling tech-
nique appropriate for the studies. The pessimistic and optimistic RCP scenarios and the use of two global mod-
els producing nested simulations of different error behaviors, attempt to include more possibilities and uncer-
tainties in the assessment of the impacts of climate change. Previous impact studies over the region were based
on the downscaling of climate change simulated from the same family of global models, HadAM3 and HadCM3
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[3] [4]. In this work, a different architecture of global model is included, the MIROCS, and tries to considerer
additional possibilities to the climate change impacts at local scale. Downscaling simulations by considering
other global model simulations and further investigation to understand the simulated climate changes are planned.
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