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Part I:
» Approach;

» Gravity-wave coupling/ time differencing;

- Horizontal advection:

* Energy transformations;
* Nonhydrostatic effects



"Philosophy” of the Eta numerical design:
"Arakawa approach”

Attention focused
on the physical properties
of the finite difference analog
of the continuous equations

 Formal, Taylor series type accuracy:
not emphasized;

* Help not expected from merely increase
in resolution



"Physical properties ... " ?

Properties (e.g., kinetic energy, enstrophy) defined
using grid point values as model grid box averages /

as opposed to their being values of continuous
and differentiable functions at grid points

(Note "physics”: done on grid boxes ! )

Arakawa, at early times:

» Conservation of energy and enstrophy;
» Avoidance of computational modes;
- Dispersion and phase speed:;



Akio Arakawa:

Design schemes so as to emulate as much as possible
physically important features of the continuous system |

Understand/ solve issues by looking at schemes for the
minimal set of tferms that describe the problem



Akio Arakawa:




The Eta (as mostly used up to now) is a regional
model:

Lateral boundary conditions ( ) are heeded

(to be briefly summarized later)



There is now also a global Eta Model:

Zhang, H., and M. Rancic: 2007: A global Eta model
on quasi-uniform grids. Quart. |. Roy. Meteor. Soc.,
133, 517-528.
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Eta dynamics: What is being done ?

* Gravity wave tferms, on the B/E grid: forward-backward scheme that

(1) avoids the time computational mode of the leapfrog scheme, and is
neutral with time steps twice leapfrog;

(2) modified to enable propagation of a height point perturbation to its
nearest-neighbor height points/suppress space computational mode;

- Split-explicit time differencing (very efficient);

* Horizontal advection scheme that conserves energy and C-grid
enstrophy, on the B/E grid, in space differencing (Janji¢ 1984);

- Conservation of energy in transformations between the kinetic and
potential energy, in space differencing;

 Nonhydrostatic option;

 The eta vertical coordinate, ensuring hydrostatically consistent
calculation of the pressure gradient ("second”) term of the pressure-
gradient force (PGF);

» Finite-volume vertical advection of dynamic variables (v, T)



e Gravity wave
(gravity-inertia
wave) scheme

Linearized
shallow-water
equations:

The fovward- backward scheme :
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Elimination of u,v from pure
gravity-wave system leads to
the wave equation; in 1D, for

simplicity, (5.6):

(From Mesinger, Arakawa, 1976)

d°h 9% h

We can perform the same elimination for each of the
finite difference schemes.

 The forward-backward and space-centered approxi-
mation to (5.5) is

n+1 n n n
uj U hivi-hi-1
At MY ’
. . (5.7)
h.}l T h}j + H ujnﬁfll - u./ﬂji.i =0 l
At 24x ’

We now substract from the second of these equations
an analogous equation for time level n—1 instead of #,
divide the resulting equation by 4, and, finally, eliminate
all u values from it using the first of Eqs. (5.7), written
for space points j + 1 and j—1 instead of j. We obtain

1 Biea=2hi 4 hia

(24x)?

W' o+ RfT
(41)*

- gH =0.(5.8)
This is a finite difference analogue of the wave equation
(5.6). Note that although each of the two equations
(5.7) is only of the first order of accuracy in time, the
wave equation analogue equivalent to (5.7) is seen to be

of the second order of accuracy.



If we use a leapfrog and space-centered approximation
to (5.5), and follow an elimination procedure like that
used in deriving (5.8), we obtain

T Y T
(241)

e

(5.9)

o ,on-l _on-l -1
o =2k B

(24x)? = 0.

This also is an analogue to the wave equation (5.6) of
second-order accuracy. However, in (5.8) the second
time derivative was approximated using values at three
consecutive time levels; in (5.9) it is approximated by
values at every second time level only, that is, at time
ntervals 247 Thus, with the leapfrog scheme, as far

as the pure gravity wave terms are concerned, we
are carrying out two independent integrations at the
same time — no wonder it takes twice the computer
time to do this !!!



. e~ Reviews of various discretization methods ap-
MOVIHQ back to 2D: gplied to atmospheric models include Mesinger and
a choice of space : Arakawa (1976), GARP (1979), ECMWEF (1984),
- 1 WMO (1984), Arakawa (1988) and Bourke (1988
gmd is needed for ﬁni(te-dif)ference, ﬁn(ite-ele):ment and sp(ectra)l
X methods and Staniforth and Co6té (1991) for the
g semi-Lagrangian method.

<<

7.2 Horizontal computational mode and distortion
of dispersion relations

Among problems in discretizing the basic govern-
ing equations, computational modes and computa-
tional distortion of the dispersion .,relations in a dis-
crete system require special attention in data as-
similation. Here a computational mode refers to a
mode in the solution of discrete equations that has
no counterpart in the solution of the original contin-
wous equations. The concept of the order of accu-
racy, therefore, which is based on the Taylor expan-
sion of the residual when the solution of the contin-
uous system is substituted into the discrete system,
is not relevant for the existence or non-existence of
a computational mode.
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FiG. 3. Spatial distributions of the dependent variables on a square grid.

Note:

E grid is same
as B, but
rotated 45°.
Thus, often:
E/B, or B/E
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"The modification”

Pointed out (1973) that
divergence equation
can be used just as well;
result is the same as
when using the auxiliary
velocity points



The method, 1973, applied to a number of time
differencing schemes;

In Mesinger 1974
applied to the "forward-backward" scheme



Back to "modification”, gravity wave terms only:

on the lattice separation problem. If, for example, the forward—backward
time scheme is used, with the momentum equation integrated forward,

"t =gt =~ e RIS ", il =gt — gAts h", (2)

instead of

=t~ HAZ[(ﬁxu + Bp) = gAtVz_h.]n, (3)
the method results in the continuity equation (Mesinger, 1974):

3 1 \T
A"t ! = h" — HAr|(8ui+ dv) — gAt(ZV;?;h. + ZVih)] e

Single-point perturbation spreads to both /1 and A points |

Extension to 3D: Janji¢, Contrib. Atmos. Phys., 1979



Eq. (4) (momentum eq. forward):

Following a pulse perturbation (height increase) at the
initial fime, at time level 1 increase in height occurs at four
nearest points equal to 2/3 of the increase which occurs in
four second nearest points.

This is not ideal, but is a considerable improvement over
the situation with no change at the four nearest height
points |

In the code: continuity eq. is integrated forward.
"Historic reasons”. With this order, at time level 1 at

the four second nearest points a decrease occurs, in the

amount of 1/2 of the increase at the four nearest points |

Might well be worse? However:



Experiments made, doing 48 h forecasts,
with full physics, at two places, comparing

eq. forward, vs eq. forward
No visible difference | (Why?)

Just published

Mesinger, F., and J. Popovic, 2010: Forward—backward scheme on

the B/E grid modified to suppress lattice separation: the two
versions, and any impact of the choice made? Meteor. Atmos.

Phys., 108, 1-8, DOI 10.1007/s00703-010-0080-1.
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Time differencing sequence (“splitting” is used):

Adjustment stage: cont. eq. forward, momentum backward
(the other way around in the Global Eta)
Vertical advection over 2 adj. time steps

Horizontal diffusion;

Repeat (except no vertical advection now, since it is done for two time steps)

Horizontal advection over 2 adjustment time steps
(first forward then of f-centered scheme, approx. neutral);

Some physics calls;
Repeat all of the above;

More physics calls;



Tiwe dilfertmting : split expliod
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However:
“horizontal diffusion” following each forward-backward step:

Adjwstnent

stLps
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F. Mesinger



ov

Adj. step splitting used: — V)V =—fkxv-gVh,
(1)
oh
N o fkxv-gVh, o TV ) =0.
is replaced Jt
by oh +V-(hv) =0 (2)  as the “adjustment step”,
ot '
4l he “ad : 7
and 5+ (v-V)v=0, () asthe “advection step

Note that height advection v - Vh (corresponding to pressure in 3D case) is carried in the
adjustment step (or, stage), even though it represents advection!

This is a necessary, but not sufficient, condition for energy conservation in time differencing in
the energy transformation (“wa”) term (transformation between potential and kinetic energy).
Splitting however, as above, makes exact conservation of energy in time differencing not possible
(amendment to Janjic et al. 1995, slides that follow). Energy conservation in the Eta, in

transformation between potential and kinetic energy is achieved in space differencing.

Time differencing in the Eta: two steps of (2) are followed by one, over 2At, step of (3).



How is this figured out?
To achieve energy conservation in time differencing one needs to replicate what happens
in the continuous case. Energy conservation in the continuous case, still, for simplicity,

shallow water egs.: e
a—+(v-V)V=—kav—th, (1.1)
y :

IV - (hv) =0, (1.2)
ot

To get the kinetic energy eq., multiply (1.1) by A v, multiply (1.2) by %v-v, and add,
Jd 1 | 1
——hv'v+h(v:V)—v:'Vv+—V VYV (hv)=-ghv-Vh 4
ot 2 { )2 2 hv)=-8 (4)

For the potential energy eq., multiply (1.2) by gh,
Jd 1

~ —gh®>+ghV-(hv)=0  (5)
ot 2
Adding (4) and (5) we obtain
I mvvelenyev -y viv)+V-(gh?v)=0. (6)
ot 2 2 2 '

Thus, the total energy in a closed domain is conserved



For conservation in time differencing terms that went into one and the other
divergence term have to be available at the same time;

e Kinetic energy in horizontal advection (the 1st divergence term of (6)):

Formed of contributions of horizontal advection of v in (1.1), and mass divergence in (1.2)
Not available at the same time with the split-explicit approach; cannot be done;

e Energy in transformations potential to kinetic (the 2nd divergence term):

Formed of the advection of h term on the right side of (4), coming from the pressure-gradient
force, and the mass divergence term of (5), coming from the continuity eq.;

Both are done in the adjustment stage with the splitting as in (2) and (3);
cancellation is thus possible if the two are done at the same time

However: they are done separately with the forward-backward scheme;
Thus, with the forward-backward scheme cannot be done™;

Time steps used for the adjustment stage very small; not considered a serious
weakness  (Eta at 10 km resolution is typically using adjustment time step of 20 s)

* Reference for which this is an update:

Janjic, Z. 1., F. Mesinger, and T. L. Black, 1995: The pressure advection term and additive
splitting in split-explicit models. Quart. |. Roy. Meteor. Soc., 121, No. 524, 953-957.



- Horizontal For two-dimensional

advection and nondivergent flow:
One obtains , average “enstrophy”=
The famous | = i
Arakawa horizontal EC = > A, K, =const

advection scheme:

Define average wavenumber as A = \/E )an K /E K
Thus: L n
A2 NC VR W

|

K3 o o o

K
K U1K,

(" Fjertoft 1953, in Mesinger, Arakawa 1976; Charney 1966)



From the preceding slide: A z K, = 2 )anK .
Thus, if one conserves analogs of average enstrophy
1 5 2
2 :
and of total kinetic energy E K,

analog of the average wavenumber will
also be conserved !!!
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FiG. 3. Spatial distributions of the dependent variables on a square grid.



From ECMWF
Seminar 1983:

e horizontal adveclion scheme :

differential
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Fig. 3.12. Mechanical analogies of the constraints imposed on the
non-linear energy cascade in the continuous case, in the case of the
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Janjic 1984:

- Arakawa-Lamb C grid
scheme written in terms of
UsV,:

- write in ferms of stream
function values (at h points
of the right hand plot);

- these same stream
function values (square
boxed in the plot) can now
be transformed to ug,ve
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From Janjicc MWR 1984: TInitial field wavenumbers 1-3, but mostly 2;
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FIG. 13. Height field after 10 000 time steps in the
control experiment. The shading interval is 160 m.

F1G. 12. Height field after 10 000 time steps in the main
experiment. The shading interval is 160 m.

Left, Janjic 1977 - inaccurate (bent) analog of the Charney energy scale;
Right, Janjic 1984 - a straight scale analog: no systematic transport to
small scales (noise !), average wavenumber well maintained



, in space differencing

» Evaluate generation of kinetic energy over the model's v
points;

+ Convert from the sum over v o a sum over T points;

» Identify the generation of potential energy terms in
the thermodynamic equation, use appropriate terms from
above

(2D: Mesinger 1984, reproduced and slightly expanded in
Mesinger, F.,, and Z. I. Janjic, 1985: Problems and numerical methods of the incorporation of
mountains in atmospheric models. In: Large-Scale Computations in Fluid Mechanics, B. E.
Engquist, S. Osher, and R. C.]. Somerville, Eds. Lectures in Applied Mathematics, Vol. 22,
81-120.
Downloadable in a bit earlier form at

http:/ / www.ecmwf.int/ publications/library /do/references/list/ 16111

3D: Dushka Zupanski in Mesinger et al. 1988)



Nonhydrostatic option (a switch available),
Janjic et al. 2001:
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