
Parallel Programming Laboratory
University of Illinois at Urbana-Champaign

Adaptive MPI Manual

Version 1.0

University of Illinois
Charm++/Converse Parallel Programming System Software

Non-Exclusive, Non-Commercial Use License

Upon execution of this Agreement by the party identified below (“Licensee”), The Board of Trustees of the University of Illinois (“Illinois”), on behalf of
The Parallel Programming Laboratory (“PPL”) in the Department of Computer Science, will provide the Charm++/Converse Parallel Programming System
software (“Charm++”) in Binary Code and/or Source Code form (“Software”) to Licensee, subject to the following terms and conditions. For purposes of
this Agreement, Binary Code is the compiled code, which is ready to run on Licensee’s computer. Source code consists of a set of files which contain the
actual program commands that are compiled to form the Binary Code.

1. The Software is intellectual property owned by Illinois, and all right, title and interest, including copyright, remain with Illinois. Illinois grants,
and Licensee hereby accepts, a restricted, non-exclusive, non-transferable license to use the Software for academic, research and internal business
purposes only, e.g. not for commercial use (see Clause 7 below), without a fee.

2. Licensee may, at its own expense, create and freely distribute complimentary works that interoperate with the Software, directing others to the PPL
server (http://charm.cs.illinois.edu) to license and obtain the Software itself. Licensee may, at its own expense, modify the Software to make derivative
works. Except as explicitly provided below, this License shall apply to any derivative work as it does to the original Software distributed by Illinois.
Any derivative work should be clearly marked and renamed to notify users that it is a modified version and not the original Software distributed by
Illinois. Licensee agrees to reproduce the copyright notice and other proprietary markings on any derivative work and to include in the documentation
of such work the acknowledgement:

“This software includes code developed by the Parallel Programming Laboratory in the Department of Computer Science at the
University of Illinois at Urbana-Champaign.”

Licensee may redistribute without restriction works with up to 1/2 of their non-comment source code derived from at most 1/10 of the non-comment
source code developed by Illinois and contained in the Software, provided that the above directions for notice and acknowledgement are observed.
Any other distribution of the Software or any derivative work requires a separate license with Illinois. Licensee may contact Illinois (kale@illinois.edu)
to negotiate an appropriate license for such distribution.

3. Except as expressly set forth in this Agreement, THIS SOFTWARE IS PROVIDED “AS IS” AND ILLINOIS MAKES NO REPRESENTATIONS
AND EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OR
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY
PATENT, TRADEMARK, OR OTHER RIGHTS. LICENSEE ASSUMES THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF
THE SOFTWARE AND/OR ASSOCIATED MATERIALS. LICENSEE AGREES THAT UNIVERSITY SHALL NOT BE HELD LIABLE FOR ANY
DIRECT, INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES WITH RESPECT TO ANY CLAIM BY LICENSEE OR ANY THIRD
PARTY ON ACCOUNT OF OR ARISING FROM THIS AGREEMENT OR USE OF THE SOFTWARE AND/OR ASSOCIATED MATERIALS.

4. Licensee understands the Software is proprietary to Illinois. Licensee agrees to take all reasonable steps to insure that the Software is protected and
secured from unauthorized disclosure, use, or release and will treat it with at least the same level of care as Licensee would use to protect and secure
its own proprietary computer programs and/or information, but using no less than a reasonable standard of care. Licensee agrees to provide the
Software only to any other person or entity who has registered with Illinois. If licensee is not registering as an individual but as an institution or
corporation each member of the institution or corporation who has access to or uses Software must agree to and abide by the terms of this license.
If Licensee becomes aware of any unauthorized licensing, copying or use of the Software, Licensee shall promptly notify Illinois in writing. Licensee
expressly agrees to use the Software only in the manner and for the specific uses authorized in this Agreement.

5. By using or copying this Software, Licensee agrees to abide by the copyright law and all other applicable laws of the U.S. including, but not limited
to, export control laws and the terms of this license. Illinois shall have the right to terminate this license immediately by written notice upon
Licensee’s breach of, or non-compliance with, any terms of the license. Licensee may be held legally responsible for any copyright infringement that
is caused or encouraged by its failure to abide by the terms of this license. Upon termination, Licensee agrees to destroy all copies of the Software
in its possession and to verify such destruction in writing.

6. The user agrees that any reports or published results obtained with the Software will acknowledge its use by the appropriate citation as follows:

“Charm++/Converse was developed by the Parallel Programming Laboratory in the Department of Computer Science at the University
of Illinois at Urbana-Champaign.”

Any published work which utilizes Charm++ shall include the following reference:

“L. V. Kale and S. Krishnan. Charm++: Parallel Programming with Message-Driven Objects. In ’Parallel Programming using C++’
(Eds. Gregory V. Wilson and Paul Lu), pp 175-213, MIT Press, 1996.”

Any published work which utilizes Converse shall include the following reference:

“L. V. Kale, Milind Bhandarkar, Narain Jagathesan, Sanjeev Krishnan and Joshua Yelon. Converse: An Interoperable Framework for
Parallel Programming. Proceedings of the 10th International Parallel Processing Symposium, pp 212-217, April 1996.”

Electronic documents will include a direct link to the official Charm++ page at http://charm.cs.illinois.edu/

7. Commercial use of the Software, or derivative works based thereon, REQUIRES A COMMERCIAL LICENSE. Should Licensee wish to make commer-
cial use of the Software, Licensee will contact Illinois (kale@illinois.edu) to negotiate an appropriate license for such use. Commercial use includes:

(a) integration of all or part of the Software into a product for sale, lease or license by or on behalf of Licensee to third parties, or

(b) distribution of the Software to third parties that need it to commercialize product sold or licensed by or on behalf of Licensee.

8. Government Rights. Because substantial governmental funds have been used in the development of Charm++/Converse, any possession, use or
sublicense of the Software by or to the United States government shall be subject to such required restrictions.

9. Charm++/Converse is being distributed as a research and teaching tool and as such, PPL encourages contributions from users of the code that
might, at Illinois’ sole discretion, be used or incorporated to make the basic operating framework of the Software a more stable, flexible, and/or
useful product. Licensees who contribute their code to become an internal portion of the Software agree that such code may be distributed by Illinois
under the terms of this License and may be required to sign an “Agreement Regarding Contributory Code for Charm++/Converse Software” before
Illinois can accept it (contact kale@illinois.edu for a copy).

UNDERSTOOD AND AGREED.
Contact Information:
The best contact path for licensing issues is by e-mail to kale@illinois.edu or send correspondence to:

Prof. L. V. Kale
Dept. of Computer Science
University of Illinois
201 N. Goodwin Ave
Urbana, Illinois 61801 USA
FAX: (217) 244-6500

2

Contents

1 Introduction 4
1.1 Overview . 4
1.2 Terminology . 7

2 Charm++ 7

3 AMPI 8
3.1 AMPI Compliance to MPI Standards . 8
3.2 Name for Main Program . 9

3.2.1 Fortran . 9
3.2.2 C or C++ . 9

3.3 Global Variable Privatization . 9
3.3.1 Automatic Globals Swapping . 10
3.3.2 Manual Change . 11
3.3.3 Source-to-source Transformation . 13
3.3.4 TLS-Globals . 13

3.4 Extensions for Migrations . 14
3.4.1 Registering User Data . 14
3.4.2 Migration . 14
3.4.3 Packing/Unpacking Thread Data . 15

3.5 Extensions for Checkpointing . 19
3.6 Extensions for Memory Efficiency . 20
3.7 Extensions for Interoperability . 20
3.8 Extensions for Sequential Re-run of a Parallel Node . 22
3.9 User Defined Initial Mapping . 22
3.10 Performance Visualization . 23
3.11 Compiling AMPI Programs . 23

A Installing AMPI 23

B Building and Running AMPI Programs 24
B.1 Building . 24
B.2 Running . 24

3

1 Introduction

This manual describes Adaptive MPI (AMPI), which is an implementation of the MPI-2.2 standard1 on top
of Charm++. Charm++ is a C++-based parallel programming library being developed by Prof. Laxmikant
(Sanjay) Kale and his students since 1992 at the University of Illinois at Urbana-Champaign.

We first describe the philosophy behind Adaptive MPI. Then we give a brief introduction to Charm++
and rationale for AMPI. We then describe AMPI in detail. Finally we summarize the changes required for
existing MPI codes to run with AMPI. Appendices contain the details of installing AMPI, building and
running AMPI programs.

1.1 Overview

Developing parallel Computational Science and Engineering (CSE) applications is a complex task. One has
to implement the right physics, develop or choose and code appropriate numerical methods, decide and im-
plement the proper input and output data formats, perform visualizations, and be concerned with correctness
and efficiency of the programs. It becomes even more complex for multi-physics coupled simulations, many
of which are dynamic and adaptively refined so that load imbalance becomes a major challenge. In addition
to imbalance caused by dynamic program behavior, hardware factors such as latencies, variability, and fail-
ures must be tolerated by applications. Our philosophy is to lessen the burden of application developers by
providing advanced programming paradigms and versatile runtime systems that can handle many common
programming and performance concerns automatically and let application programmers focus on the actual
application content.

Many of these concerns can be addressed using the processor virtualization and over-decomposition
philosophy of Charm++. Thus, the developer only sees virtual processors and lets the runtime system deal
with underlying physical processors. This is implemented in AMPI by mapping MPI ranks to Charm++
user-level threads as illustrated in Figure1. As an immediate and simple benefit, the programmer can use as
many virtual processors (”MPI ranks”) as the problem can be easily decomposed to. For example, suppose
the problem domain has n ∗ 2n parts that can be easily distributed but programming for general number
of MPI processes is burdensome, then the developer can have n ∗ 2n virtual processors on any number of
physical ones using AMPI.

Figure 1: MPI processes are implemented as user-level threads in AMPI

AMPI’s execution model consists of multiple user-level threads per Processing Element (PE). The
Charm++ scheduler coordinates execution of these user-level threads (also called Virtual Processors or
VPs) and controls execution as shown in Figure 2. These VPs can also migrate between PEs for the purpose
of load balancing or other reasons. The number of VPs per PE specifies the virtualization ratio (degree

1Currently, MPI-2.2’s PMPI profiling interface is missing from AMPI and the MPI-3.1 standard is under active development,
though we already support non-blocking and neighborhood collectives.

4

of over-decomposition). For example, in Figure 2 virtualization ratio is four (there are four VPs per each
PE). Figure 3 show how the problem domain is over-decomposed in AMPI’s VPs as opposed to other MPI
implementations.

Figure 2: VPs are managed by Charm++ scheduler

Figure 3: Problem domain is over-decomposed to more VPs

Another benefit of virtualization is communication and computation overlap, which is automatically
realized in AMPI without programming effort. Techniques such as software pipelining require significant
programming effort to achieve this goal and improve performance. However, one can use AMPI to have
more virtual processors than physical processors to overlap communication and computation. Each time a
VP is blocked for communication, the Charm++ scheduler picks the next VP among those that are ready to
execute. In this manner, while some of the VPs of a physical processor are waiting for a message to arrive,
others can continue their execution. Thus, performance improves without any changes to the application
source code.

Another potential benefit is that of better cache utilization. With over-decomposition, a smaller sub-
domain is accessed by a VP repeatedly in different function calls before getting blocked by communication
and switching to another VP. That smaller subdomain may fit into cache if over-decomposition is enough.
This concept is illustrated in Figure 4 where each AMPI subdomain (such as 12) is smaller than correspond-
ing MPI subdomain (such as 3) and may fit into cache memory. Thus, there is a potential performance
improvement without changing the source code.

5

Figure 4: Smaller subdomains may fit into cache and result in better performance

One important concern is that of load imbalance. New generation parallel applications are dynamically
varying, meaning that processors’ load is shifting during execution. In a dynamic simulation application
such as rocket simulation, burning solid fuel, sub-scaling for a certain part of the mesh, crack propagation,
particle flows all contribute to load imbalance. A centralized load balancing strategy built into an application
is impractical since each individual module is developed mostly independently by various developers. In
addition, embedding a load balancing strategy in the code complicates it greatly, and programming effort
increases significantly. The runtime system is uniquely positioned to deal with load imbalance. Figure 5
shows the runtime system migrating a VP after detecting load imbalance. This domain may correspond to a
weather forecast model where there is a storm cell in the top-left quadrant, which requires more computation
to simulate. AMPI will then migrate VP 13 to balance the division of work across processors and improve
performance. Note that incorporating this sort of load balancing inside the application code may take a lot
of effort and complicate the code.

Figure 5: AMPI migrates VPs across processors for load balancing

There are many different load balancing strategies built into Charm++ that can be selected by an
AMPI application developer. Among those, some may fit better for a particular application depending on
its characteristics. Moreover, one can write a new load balancer, best suited for an application, by the
simple API provided inside Charm++ infrastructure. Our approach is based on actual measurement of load
information at runtime, and on migrating computations from heavily loaded to lightly loaded processors.

For this approach to be effective, we need the computation to be split into pieces many more in number
than available processors. This allows us to flexibly map and re-map these computational pieces to available
processors. This approach is usually called “multi-domain decomposition”.

Charm++, which we use as a runtime system layer for the work described here, simplifies our approach.

6

It embeds an elaborate performance tracing mechanism, a suite of plug-in load balancing strategies, in-
frastructure for defining and migrating computational load, and is interoperable with other programming
paradigms.

1.2 Terminology

Module A module refers to either a complete program or a library with an orchestrator subroutine2 . An
orchestrator subroutine specifies the main control flow of the module by calling various subroutines
from the associated library and does not usually have much state associated with it.

Thread A thread is a lightweight process that owns a stack and machine registers including a program
counter, but shares code and data with other threads within the same address space. If the underlying
operating system recognizes a thread, it is known as a kernel thread, otherwise it is known as a user-
thread. A context-switch between threads refers to suspending one thread’s execution and transferring
control to another thread. Kernel threads typically have higher context switching costs than user-
threads because of operating system overheads. The policy implemented by the underlying system for
transferring control between threads is known as its thread scheduling policy. Scheduling policy for
kernel threads is determined by the operating system, and is often more inflexible than user-threads.
Scheduling policy is said to be non-preemptive if a context-switch occurs only when the currently
running thread willingly asks to be suspended, otherwise it is said to be preemptive. AMPI threads
are non-preemptive user-level threads.

Object An object is just a blob of memory on which certain computations can be performed. The memory
is referred to as an object’s state, and the set of computations that can be performed on the object is
called the interface of the object.

2 Charm++

Charm++ is an object-oriented parallel programming library for C++. It differs from traditional message
passing programming libraries (such as MPI) in that Charm++ is “message-driven”. Message-driven parallel
programs do not block the processor waiting for a message to be received. Instead, each message carries with
itself a computation that the processor performs on arrival of that message. The underlying runtime system
of Charm++ is called Converse, which implements a “scheduler” that chooses which message to schedule
next (message-scheduling in Charm++ involves locating the object for which the message is intended, and
executing the computation specified in the incoming message on that object). A parallel object in Charm++
is a C++ object on which a certain computations can be asked to be performed from remote processors.

Charm++ programs exhibit latency tolerance since the scheduler always picks up the next available
message rather than waiting for a particular message to arrive. They also tend to be modular, because of
their object-based nature. Most importantly, Charm++ programs can be dynamically load balanced, because
the messages are directed at objects and not at processors; thus allowing the runtime system to migrate the
objects from heavily loaded processors to lightly loaded processors. It is this feature of Charm++ that we
utilize for AMPI.

Since many CSE applications are originally written using MPI, one would have to do a complete rewrite
if they were to be converted to Charm++ to take advantage of dynamic load balancing and other Charm++
features. This is indeed impractical. However, Converse – the runtime system of Charm++ – supports
interoperability between different parallel programming paradigms such as parallel objects and threads.
Using this feature, we developed AMPI, which is described in more detail in the next section.

2Like many software engineering terms, this term is overused, and unfortunately clashes with Fortran90 module that denotes
a program unit. We specifically refer to the later as “Fortran 90 module” to avoid confusion.

7

3 AMPI

AMPI utilizes the dynamic load balancing and other capabilities of Charm++ by associating a “user-level”
thread with each Charm++ migratable object. User’s code runs inside this thread, so that it can issue
blocking receive calls similar to MPI, and still present the underlying scheduler an opportunity to schedule
other computations on the same processor. The runtime system keeps track of the computational loads of
each thread as well as the communication graph between AMPI threads, and can migrate these threads in
order to balance the overall load while simultaneously minimizing communication overhead.

3.1 AMPI Compliance to MPI Standards

Currently AMPI supports the MPI-2.2 standard, with preliminary support for some MPI-3.1 features and
a collection of extensions explained in detail in this manual. One-sided communication calls in MPI-2 and
MPI-3 are implemented, but they do not yet take advantage of RMA features. Non-blocking collectives have
been defined in AMPI since before MPI-3.0’s adoption of them. Also ROMIO3 has been integrated into
AMPI to support parallel I/O features.

The following MPI basic datatypes are supported in AMPI. (Some are not available in the Fortran
binding. Refer to the MPI Standard for details.)

MPI_DATATYPE_NULL MPI_BYTE MPI_UNSIGNED_LONG MPI_LONG_DOUBLE_INT

MPI_DOUBLE MPI_PACKED MPI_LONG_DOUBLE MPI_2FLOAT

MPI_INT MPI_SHORT MPI_FLOAT_INT MPI_2DOUBLE

MPI_FLOAT MPI_LONG MPI_DOUBLE_INT MPI_LB

MPI_COMPLEX MPI_UNSIGNED_CHAR MPI_LONG_INT MPI_UB

MPI_LOGICAL MPI_UNSIGNED_SHORT MPI_2INT

MPI_CHAR MPI_UNSIGNED MPI_SHORT_INT

The following MPI reduction operations are supported in AMPI.

MPI_MAX MPI_MIN MPI_SUM MPI_PROD MPI_MAXLOC MPI_MINLOC MPI_REPLACE

MPI_LAND MPI_LOR MPI_LXOR MPI_BAND MPI_BOR MPI_BXOR MPI_NO_OP

The following are AMPI extensions to the MPI standard, which will be explained in detail in this
manual. All AMPI extensions to the MPI standard are prefixed with AMPI rather than MPI . All extensions
are available in C, C++, and Fortran, with the exception of AMPI Command argument count and AMPI Get -

command argument which are only available in Fortran.

AMPI_Migrate AMPI_Register_pup AMPI_Get_pup_data

AMPI_Migrate_to_pe AMPI_Set_migratable AMPI_Evacuate

AMPI_Load_set_value AMPI_Load_start_measure AMPI_Load_stop_measure

AMPI_Iget AMPI_Iget_wait AMPI_Iget_data

AMPI_Iget_free AMPI_Type_is_contiguous AMPI_Register_main

AMPI_Alltoall_iget AMPI_Alltoall_medium AMPI_Alltoall_long

AMPI_Yield AMPI_Suspend AMPI_Resume

AMPI_Register_just_migrated AMPI_Register_about_to_migrate

AMPI_Command_argument_count AMPI_Get_command_argument

AMPI provides a set of built-in attributes on all communicators and windows to find the number of the
worker thread, process, or host that a rank is currently running on, as well as the total number of worker
threads, processes, and hosts in the job. We define a worker thread to be a thread on which one of more
AMPI ranks are scheduled. We define a process here as an operating system process, which may contain one
or more worker threads. The built-in attributes are AMPI MY WTH, AMPI MY PROCESS, AMPI NUM WTHS, and
AMPI NUM PROCESSES. These attributes are accessible from any rank by calling MPI Comm get attr, such as:

3http://www-unix.mcs.anl.gov/romio/

8

! Fortran:

integer :: my_wth, flag, ierr

call MPI_Comm_get_attr(MPI_COMM_WORLD, AMPI_MY_WTH, my_wth, flag, ierr)

// C/C++:

int my_wth, flag;

MPI_Comm_get_attr(MPI_COMM_WORLD, AMPI_MY_WTH, &my_wth, &flag);

AMPI also provides extra communicator types that users can pass to MPI Comm split type: AMPI COMM -

TYPE HOST for splitting a communicator into disjoint sets of ranks that share the same physical host, AMPI -

COMM TYPE PROCESS for splitting a communicator into disjoint sets of ranks that share the same operating
system process, and AMPI COMM TYPE WTH, for splitting a communicator into disjoint sets of ranks that share
the same worker thread.

For parsing Fortran command line arguments, AMPI Fortran programs should use our extension APIs,
which are similar to Fortran 2003’s standard APIs. For example:

integer :: i, argc, ierr

integer, parameter :: arg_len = 128

character(len=arg_len), dimension(:), allocatable :: raw_arguments

call AMPI_Command_argument_count(argc)

allocate(raw_arguments(argc))

do i = 1, size(raw_arguments)

call AMPI_Get_command_argument(i, raw_arguments(i), arg_len, ierr)

end do

3.2 Name for Main Program

To convert an existing program to use AMPI, the main function or program may need to be renamed. The
changes should be made as follows:

3.2.1 Fortran

You must declare the main program as a subroutine called “MPI MAIN”. Do not declare the main subroutine
as a program because it will never be called by the AMPI runtime.

program pgm -> subroutine MPI_Main

... ...

end program -> end subroutine

3.2.2 C or C++

The main function can be left as is, if mpi.h is included before the main function. This header file has a
preprocessor macro that renames main, and the renamed version is called by the AMPI runtime by each
thread.

3.3 Global Variable Privatization

For the before-mentioned benefits to be effective, one needs to map multiple user-level threads onto each
processor. Traditional MPI programs assume that the entire processor is allocated to themselves, and
that only one thread of control exists within the process’s address space. So, they may use global and
static variables in the program. However, global and static variables are problematic for multi-threaded
environments such as AMPI or OpenMP. This is because there is a single instance of those variables so
they will be shared among different threads in the single address space and a wrong result may be produced

9

by the program. Figure 6 shows an example of a multi-threaded application with two threads in a single
process. var is a global or static variable in this example. Thread 1 assigns a value to it, then it gets blocked
for communication and another thread can continue. Thereby, thread 2 is scheduled next and accesses var
which is wrong. Semantics of this program needs separate instances of var for each of the threads. That is
where the need arises to make some transformations to the original MPI program in order to run correctly
with AMPI. Note, this is the only change necessary to run an MPI program with AMPI, that the program
be thread-safe and have no global variables whose values differ across different MPI ranks.

Figure 6: Global or static variables are an issue for AMPI

The basic transformation needed to port the MPI program to AMPI is privatization of global variables.4

With the MPI process model, each MPI node can keep a copy of its own “permanent variables” – variables
that are accessible from more than one subroutines without passing them as arguments. Module variables,
“saved” subroutine local variables, and common blocks in Fortran90 belong to this category. If such a
program is executed without privatization on AMPI, all the AMPI threads that reside on one processor will
access the same copy of such variables, which is clearly not the desired semantics. To ensure correct execution
of the original source program, it is necessary to make such variables “private” to individual threads. We
provide two choices: automatic global swapping and manual code modification.

3.3.1 Automatic Globals Swapping

Thanks to the ELF Object Format, we have successfully automated the procedure of switching the set of
user global variables when switching thread contexts. Executable and Linkable Format (ELF) is a common
standard file format for Object Files in Unix-like operating systems. ELF maintains a Global Offset Table
(GOT) for globals so it is possible to switch GOT contents at thread context-switch by the runtime system.

The only thing that the user needs to do is to set flag -swapglobals at compile and link time (e.g.
“ampicc -o prog prog.c -swapglobals”). It does not need any change to the source code and works with any
language (C, C++, Fortran, etc). However, it does not handle static variables and has a context switching
overhead that grows with the number of global variables. Currently, this feature only works on x86 and
x86 64 (e.g. amd64) platforms that fully support ELF. Thus, it may not work on PPC or Itanium, or on
some microkernels such as Catamount. When this feature does not work for you, you can try other ways of
handling global or static variables, which are detailed in the following sections.

4Typical Fortran MPI programs contain three types of global variables.

1. Global variables that are “read-only”. These are either parameters that are set at compile-time. Or other variables that
are read as input or set at the beginning of the program and do not change during execution. It is not necessary to
privatize such variables.

2. Global variables that are used as temporary buffers. These are variables that are used temporarily to store values to
be accessible across subroutines. These variables have a characteristic that there is no blocking call such as MPI recv

between the time the variable is set and the time it is ever used. It is not necessary to privatize such variables either.

3. True global variables. These are used across subroutines that contain blocking receives and therefore the possibility of a
context switch between the definition and use of the variable. These variables need to be privatized.

10

3.3.2 Manual Change

We have employed a strategy of argument passing to do this privatization transformation. That is, the global
variables are bunched together in a single user-defined type, which is allocated by each thread dynamically.
Then a pointer to this type is passed from subroutine to subroutine as an argument. Since the subroutine
arguments are passed on the stack, which is not shared across all threads, each subroutine when executing
within a thread operates on a private copy of the global variables.

This scheme is demonstrated in the following examples. The original Fortran90 code contains a module
shareddata. This module is used in the main program and a subroutine subA.

!FORTRAN EXAMPLE

MODULE shareddata

INTEGER :: myrank

DOUBLE PRECISION :: xyz(100)

END MODULE

SUBROUTINE MPI_MAIN

USE shareddata

include ’mpif.h’

INTEGER :: i, ierr

CALL MPI_Init(ierr)

CALL MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierr)

DO i = 1, 100

xyz(i) = i + myrank

END DO

CALL subA

CALL MPI_Finalize(ierr)

END PROGRAM

SUBROUTINE subA

USE shareddata

INTEGER :: i

DO i = 1, 100

xyz(i) = xyz(i) + 1.0

END DO

END SUBROUTINE

//C Example

#include <mpi.h>

int myrank;

double xyz[100];

void subA();

int main(int argc, char** argv){
int i;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

for(i=0;i<100;i++)

xyz[i] = i + myrank;

subA();

MPI_Finalize();

}

11

void subA(){
int i;

for(i=0;i<100;i++)

xyz[i] = xyz[i] + 1.0;

}

AMPI executes the main subroutine inside a user-level thread as a subroutine.
Now we transform this program using the argument passing strategy. We first group the shared data

into a user-defined type.

!FORTRAN EXAMPLE

MODULE shareddata

TYPE chunk

INTEGER :: myrank

DOUBLE PRECISION :: xyz(100)

END TYPE

END MODULE

//C Example

struct shareddata{
int myrank;

double xyz[100];

};

Now we modify the main subroutine to dynamically allocate this data and change the references to them.
Subroutine subA is then modified to take this data as argument.

!FORTRAN EXAMPLE

SUBROUTINE MPI_Main

USE shareddata

USE AMPI

INTEGER :: i, ierr

TYPE(chunk), pointer :: c

CALL MPI_Init(ierr)

ALLOCATE(c)

CALL MPI_Comm_rank(MPI_COMM_WORLD, c%myrank, ierr)

DO i = 1, 100

c%xyz(i) = i + c%myrank

END DO

CALL subA(c)

CALL MPI_Finalize(ierr)

END SUBROUTINE

SUBROUTINE subA(c)

USE shareddata

TYPE(chunk) :: c

INTEGER :: i

DO i = 1, 100

c%xyz(i) = c%xyz(i) + 1.0

END DO

END SUBROUTINE

//C Example

void MPI_Main{

12

int i,ierr;

struct shareddata *c;

ierr = MPI_Init();

c = (struct shareddata*)malloc(sizeof(struct shareddata));

ierr = MPI_Comm_rank(MPI_COMM_WORLD, c.myrank);

for(i=0;i<100;i++)

c.xyz[i] = i + c.myrank;

subA(c);

ierr = MPI_Finalize();

}

void subA(struct shareddata *c){
int i;

for(i=0;i<100;i++)

c.xyz[i] = c.xyz[i] + 1.0;

}

With these changes, the above program can be made thread-safe. Note that it is not really necessary to
dynamically allocate chunk. One could have declared it as a local variable in subroutine MPI Main. (Or for a
small example such as this, one could have just removed the shareddata module, and instead declared both
variables xyz and myrank as local variables). This is indeed a good idea if shared data are small in size. For
large shared data, it would be better to do heap allocation because in AMPI, the stack sizes are fixed at the
beginning (and can be specified from the command line) and stacks do not grow dynamically.

3.3.3 Source-to-source Transformation

Another approach is to do the changes described in the previous scheme automatically. It means that we
can use a tool to transform the source code to move global or static variables in an object and pass them
around. This approach is portable across systems and compilers and may also improve locality and hence
cache utilization. It also does not have the context-switch overhead of swapping globals. We have multiple
tools for automating these transformations for different languages. Currently, there is a tool called Photran5

for refactoring Fortran codes that can do this transformation. It is Eclipse-based and works by constructing
Abstract Syntax Trees (ASTs) of the program. We also have a tool built on top of the ROSE compiler6 that
works for C/C++ and Fortran programs that is available upon request.

3.3.4 TLS-Globals

Thread Local Store (TLS) was originally employed in kernel threads to localize variables and provide thread
safety. It can be used by annotating global/static variables in C/C++ with thread in the source code.
Thus, those variables will have one instance per extant thread. This keyword is not an official extension of
the C language, though compiler writers are encouraged to implement this feature. Currently, the ELF file
format supports Thread Local Storage.

It handles both global and static variables and has no context-switching overhead. Context-switching is
just changing the TLS segment register to point to the thread’s local copy. However, although it is popular,
it is not supported by all compilers. Currently, Charm++ supports it for x86/x86 64 platforms. A modified
gfortran is also available to use this feature upon request. To use TLS-Globals, one has to add thread
before all global variables. For the example above, the following changes to the code handles the global
variables:

__thread int myrank;

__thread double xyz[100];

The runtime system also should know that TLS-Globals is used at compile time:

5http://www.eclipse.org/photran
6http://rosecompiler.org/

13

Privatization Scheme X86 IA64 Opteron Mac OS X IBM SP SUN BG/P Cray/XT Windows

Transformation Yes Yes Yes Yes Yes Yes Yes Yes Yes
GOT-Globals Yes Yes Yes No No Maybe No No No
TLS-Globals Yes Maybe Yes No Maybe Maybe No Yes Maybe

Table 1: Portability of current implementations of three privatization schemes. “Yes” means we have imple-
mented this technique. “Maybe” indicates there are no theoretical problems, but no implementation exists.
“No” indicates the technique is impossible on this platform.

ampiCC -o example example.C -tlsglobals

Table 1 shows portability of different schemes.

3.4 Extensions for Migrations

AMPI provides fully automated support for migrating MPI ranks between nodes of a system without any
application-specific code at all. We do so using a memory allocator, Isomalloc, that allocates memory per
user-level thread to globally unique virtual memory addresses. This means that every worker thread in
the system reserves slices of virtual memory for all user-level threads, allowing transparent migration of
stacks and pointers into memory (Isomalloc requires 64-bit virtual memory addresses and support from the
operating system for mapping memory to arbitrary virtual addresses). Applications only need to link with
Isomalloc to enable automatic migratability, using -memory isomalloc.

For systems that do not support Isomalloc and for users that wish to have more fine-grain control over
which application data structures will be copied at migration time, we have added a few calls to AMPI.
These include the ability to register thread-specific data with the run-time system, to pack and unpack all
of the thread’s data, and to express willingness to migrate.

3.4.1 Registering User Data

When the AMPI runtime system decides that load imbalance exists within the application, it will invoke one
of its internal load balancing strategies, which determines the new mapping of AMPI ranks so as to balance
the load. Then the AMPI runtime packs up the rank’s state and moves it to its new home processor. AMPI
packs up any internal data in use by the rank, including the thread’s stack in use. This means that the local
variables declared in subroutines in a rank, which are created on stack, are automatically packed up by the
AMPI runtime system. However, it has no way of knowing what other data are in use by the rank. Thus
upon starting execution, a rank needs to notify the system about the data that it is going to use (apart from
local variables). Even with the data registration, AMPI cannot determine what size the data is, or whether
the registered data contains pointers to other places in memory. For this purpose, a packing subroutine also
needs to be provided to the AMPI runtime system along with registered data. (See next section for writing
packing subroutines.) The call provided by AMPI for doing this is AMPI Register pup. This function takes
three arguments: a data item to be transported along with the rank, the pack subroutine, and a pointer to an
integer which denotes the registration identifier. In C/C++ programs, it may be necessary to use this integer
value after migration completes and control returns to the rank with the function AMPI Get pup data.

3.4.2 Migration

The AMPI runtime system could detect load imbalance by itself and invoke the load balancing strategy.
However, since the application code is going to pack/unpack the rank’s data, writing the pack subroutine
will be complicated if migrations occur at a stage unknown to the application. For example, if the system
decides to migrate a rank while it is in initialization stage (say, reading input files), application code will
have to keep track of how much data it has read, what files are open etc. Typically, since initialization occurs
only once in the beginning, load imbalance at that stage would not matter much. Therefore, we want the
demand to perform load balance check to be initiated by the application.

AMPI provides a subroutine AMPI Migrate(MPI Info hints); for this purpose. Each rank periodically
calls AMPI Migrate. Typical CSE applications are iterative and perform multiple time-steps. One should call

14

AMPI Migrate in each rank at the end of some fixed number of timesteps. The frequency of AMPI Migrate

should be determined by a tradeoff between conflicting factors such as the load balancing overhead, and
performance degradation caused by load imbalance. In some other applications, where application suspects
that load imbalance may have occurred, as in the case of adaptive mesh refinement; it would be more
effective if it performs a couple of timesteps before telling the system to re-map ranks. This will give the
AMPI runtime system some time to collect the new load and communication statistics upon which it bases
its migration decisions. Note that AMPI Migrate does NOT tell the system to migrate the rank, but merely
tells the system to check the load balance after all the ranks call AMPI Migrate. To migrate the rank or not
is decided only by the system’s load balancing strategy.

Essentially, a call to AMPI Migrate signifies to the runtime system that the application has reached a
point at which it is safe to serialize the local state. Knowing this, the runtime system can act in several
ways.

The MPI Info object taken as a parameter by AMPI Migrate gives users a way to influence the runtime
system’s decision-making and behavior. Users should set the MPI Info key "ampi load balance" to one of
the following values: "sync", "async", or "false". Synchronous load balancing assumes that the application
is already at a synchronization point. Asynchronous load balancing does not assume this, and a value of
"false" is the same as not requesting load balancing at all.

Calling AMPI Migrate on a rank with pending send requests (i.e. from MPI Isend) is currently not
supported, therefore users should always wait on any outstanding send requests before calling AMPI Migrate.

// Setup

MPI_Info hints;

MPI_Info_create(&hints);

MPI_Info_set(hints, "ampi_load_balance", "sync");

...

// Main time-stepping loop

for (int iter=0; iter < max_iters; iter++) {

// Time step work ...

if (iter % lb_freq == 0)

AMPI_Migrate(hints);

}

Note that migrating ranks around the cores and nodes of a system can change which ranks share physical
resources, such as memory. A consequence of this is that communicators created via MPI Comm split -

type are invalidated by calls to AMPI Migrate that result in migration which breaks the semantics of that
communicator type. The only valid routine to call on such communicators is MPI Comm free.

We also provide callbacks that user code can register with the runtime system to be invoked just before and
right after migration: AMPI Register about to migrate and AMPI Register just migrated respectively.
Note that the callbacks are only invoked on those ranks that are about to actually migrate or have just
actually migrated.

AMPI provide routines for starting and stopping load measurements, and for users to explicitly set
the load value of a rank using the following: AMPI Load start measure, AMPI Load stop measure, AMPI -

Load reset measure, and AMPI Load set value. And since AMPI builds on top of Charm++, users can
experiment with the suite of load balancing strategies included with Charm++, as well as write their own
strategies based on user-level information and heuristics.

3.4.3 Packing/Unpacking Thread Data

Once the AMPI runtime system decides which ranks to send to which processors, it calls the specified
pack subroutine for that rank, with the rank-specific data that was registered with the system using AMPI -

15

Register pup. If an AMPI application uses Isomalloc, then the system will define the Pack/Unpack routines
for the user. This section explains how a subroutine should be written for performing explicit pack/unpack.

There are three steps for transporting the rank’s data to another processor. First, the system calls a
subroutine to get the size of the buffer required to pack the rank’s data. This is called the “sizing” step.
In the next step, which is called immediately afterward on the source processor, the system allocates the
required buffer and calls the subroutine to pack the rank’s data into that buffer. This is called the “packing”
step. This packed data is then sent as a message to the destination processor, where first a rank is created
(along with the thread) and a subroutine is called to unpack the rank’s data from the buffer. This is called
the “unpacking” step.

Though the above description mentions three subroutines called by the AMPI runtime system, it is
possible to actually write a single subroutine that will perform all the three tasks. This is achieved using
something we call a “pupper”. A pupper is an external subroutine that is passed to the rank’s pack-unpack-
sizing subroutine, and this subroutine, when called in different phases performs different tasks. An example
will make this clear:

Suppose the user data, chunk, is defined as a derived type in Fortran90:

!FORTRAN EXAMPLE

MODULE chunkmod

INTEGER, parameter :: nx=4, ny=4, tchunks=16

TYPE, PUBLIC :: chunk

REAL(KIND=8) t(22,22)

INTEGER xidx, yidx

REAL(KIND=8), dimension(400):: bxm, bxp, bym, byp

END TYPE chunk

END MODULE

//C Example

struct chunk{
double t;

int xidx, yidx;

double bxm,bxp,bym,byp;

};

Then the pack-unpack subroutine chunkpup for this chunk module is written as:

!FORTRAN EXAMPLE

SUBROUTINE chunkpup(p, c)

USE pupmod

USE chunkmod

IMPLICIT NONE

INTEGER :: p

TYPE(chunk) :: c

call pup(p, c%t)

call pup(p, c%xidx)

call pup(p, c%yidx)

call pup(p, c%bxm)

call pup(p, c%bxp)

call pup(p, c%bym)

call pup(p, c%byp)

end subroutine

//C Example

void chunkpup(pup_er p, struct chunk c){

16

pup_double(p,c.t);

pup_int(p,c.xidx);

pup_int(p,c.yidx);

pup_double(p,c.bxm);

pup_double(p,c.bxp);

pup_double(p,c.bym);

pup_double(p,c.byp);

}

There are several things to note in this example. First, the same subroutine pup (declared in module
pupmod) is called to size/pack/unpack any type of data. This is possible because of procedure overloading
possible in Fortran90. Second is the integer argument p. It is this argument that specifies whether this
invocation of subroutine chunkpup is sizing, packing or unpacking. Third, the integer parameters declared in
the type chunk need not be packed or unpacked since they are guaranteed to be constants and thus available
on any processor.

A few other functions are provided in module pupmod. These functions provide more control over the
packing/unpacking process. Suppose one modifies the chunk type to include allocatable data or pointers that
are allocated dynamically at runtime. In this case, when chunk is packed, these allocated data structures
should be deallocated after copying them to buffers, and when chunk is unpacked, these data structures
should be allocated before copying them from the buffers. For this purpose, one needs to know whether
the invocation of chunkpup is a packing one or unpacking one. For this purpose, the pupmod module
provides functions fpup_isdeleting(fpup_isunpacking). These functions return logical value .TRUE. if
the invocation is for packing (unpacking), and .FALSE. otherwise. The following example demonstrates this:

Suppose the type dchunk is declared as:

!FORTRAN EXAMPLE

MODULE dchunkmod

TYPE, PUBLIC :: dchunk

INTEGER :: asize

REAL(KIND=8), pointer :: xarr(:), yarr(:)

END TYPE dchunk

END MODULE

//C Example

struct dchunk{
int asize;

double* xarr, *yarr;

};

Then the pack-unpack subroutine is written as:

!FORTRAN EXAMPLE

SUBROUTINE dchunkpup(p, c)

USE pupmod

USE dchunkmod

IMPLICIT NONE

INTEGER :: p

TYPE(dchunk) :: c

pup(p, c%asize)

IF (fpup_isunpacking(p)) THEN !! if invocation is for unpacking

allocate(c%xarr(c%asize))

ALLOCATE(c%yarr(c%asize))

17

ENDIF

pup(p, c%xarr)

pup(p, c%yarr)

IF (fpup_isdeleting(p)) THEN !! if invocation is for packing

DEALLOCATE(c%xarr)

DEALLOCATE(c%yarr)

ENDIF

END SUBROUTINE

//C Example

void dchunkpup(pup_er p, struct dchunk c){
pup_int(p,c.asize);

if(pup_isUnpacking(p)){
c.xarr = (double *)malloc(sizeof(double)*c.asize);

c.yarr = (double *)malloc(sizeof(double)*c.asize);

}
pup_doubles(p,c.xarr,c.asize);

pup_doubles(p,c.yarr,c.asize);

if(pup_isPacking(p)){
free(c.xarr);

free(c.yarr);

}
}

One more function fpup_issizing is also available in module pupmod that returns .TRUE. when the
invocation is a sizing one. In practice one almost never needs to use it.

Charm++ also provides higher-level PUP routines for C++ STL data structures and Fortran90 data
types. The STL PUP routines will deduce the size of the structure automatically, so that the size of the
data does not have to be passed in to the PUP routine. This facilitates writing PUP routines for large
pre-existing codebases. To use it, simply include pup stl.h in the user code. For modern Fortran with
pointers and allocatable data types, AMPI provides a similarly automated PUP interface called apup. User
code can include pupmod and then call apup() on any array (pointer or allocatable, multi-dimensional) of
built-in types (character, short, int, long, real, double, complex, double complex, logical) and the runtime
will deduce the size and shape of the array, including unassociated and NULL pointers. Here is the dchunk
example from earlier, written to use the apup interface:

!FORTRAN EXAMPLE

SUBROUTINE dchunkpup(p, c)

USE pupmod

USE dchunkmod

IMPLICIT NONE

INTEGER :: p

TYPE(dchunk) :: c

!! no need for asize

!! no isunpacking allocation necessary

apup(p, c%xarr)

apup(p, c%yarr)

18

!! no isdeleting deallocation necessary

END SUBROUTINE

Calling MPI routines or accessing global variables that have been privatized by use of tlsglobals or
swapglobals from inside a user PUP routine is currently not allowed in AMPI. Users can store MPI-related
information like communicator rank and size in data structures to be be packed and unpacked before they
are needed inside a PUP routine.

3.5 Extensions for Checkpointing

The pack-unpack subroutines written for migrations make sure that the current state of the program is
correctly packed (serialized) so that it can be restarted on a different processor. Using the same subroutines,
it is also possible to save the state of the program to disk, so that if the program were to crash abruptly, or if
the allocated time for the program expires before completing execution, the program can be restarted from
the previously checkpointed state. Thus, the pack-unpack subroutines act as the key facility for checkpointing
in addition to their usual role for migration. Just as in load balancing, no application specific code is required
when using Isomalloc: the AMPI runtime takes care of all the details involved in migrating data.

To perform a checkpoint in an AMPI program, all you have to do is make a call to int AMPI -

Migrate(MPI Info hints) with an MPI Info object that specifies how you would like to checkpoint. Check-
pointing can be thought of as migrating AMPI ranks to storage. Users set the checkpointing policy on an
MPI Info object’s "ampi checkpoint" key to one of the following values: "to file=directory name", "in -

memory", or "false".
Checkpointing to file tells the runtime system to save checkpoints in a given directory. (Typically, in an

iterative program, the iteration number, converted to a character string, can serve as a checkpoint directory
name.) This directory is created, and the entire state of the program is checkpointed to this directory. One
can restart the program from the checkpointed state (using the same, more, or fewer physical processors
than were checkpointed with) by specifying "+restart directory name" on the command-line.

Checkpointing in memory allows applications to transparently tolerate failures online. The checkpointing
scheme used here is a double in-memory checkpoint, in which virtual processors exchange checkpoints pairwise
across nodes in each other’s memory such that if one node fails, that failed node’s AMPI ranks can be
restarted by its buddy once the failure is detected by the runtime system. As long as no two buddy nodes
fail in the same checkpointing interval, the system can restart online without intervention from the user
(provided the job scheduler does not revoke its allocation). Any load imbalance resulting from the restart
can then be managed by the runtime system. Use of this scheme is illustrated in the code snippet below.

// Setup

MPI_Info hints;

MPI_Info_create(&hints);

MPI_Info_set(hints, "ampi_checkpoint", "in_memory");

...

// Main time-stepping loop

for (int iter=0; iter < max_iters; iter++) {

// Time step work ...

if (iter % chkpt_freq == 0)

AMPI_Migrate(hints);

}

19

A value of "false" results in no checkpoint being done that step. Note that AMPI Migrate is a collective
function, meaning every virtual processor in the program needs to call this subroutine with the same MPI -
Info object. The checkpointing capabilities of AMPI are powered by the Charm++ runtime system. For
more information about checkpoint/restart mechanisms please refer to the Charm++ manual ??.

3.6 Extensions for Memory Efficiency

MPI functions usually require the user to preallocate the data buffers needed before the functions being called.
For unblocking communication primitives, sometimes the user would like to do lazy memory allocation until
the data actually arrives, which gives the opportunities to write more memory efficient programs. We provide
a set of AMPI functions as an extension to the standard MPI-2 one-sided calls, where we provide a split
phase MPI Get called AMPI Iget. AMPI Iget preserves the similar semantics as MPI Get except that no user
buffer is provided to hold incoming data. AMPI Iget wait will block until the requested data arrives and
runtime system takes care to allocate space, do appropriate unpacking based on data type, and return.
AMPI Iget free lets the runtime system free the resources being used for this get request including the data
buffer. Finally, AMPI Iget data is the routine used to access the data.

int AMPI_Iget(MPI_Aint orgdisp, int orgcnt, MPI_Datatype orgtype, int rank,

MPI_Aint targdisp, int targcnt, MPI_Datatype targtype, MPI_Win win,

MPI_Request *request);

int AMPI_Iget_wait(MPI_Request *request, MPI_Status *status, MPI_Win win);

int AMPI_Iget_free(MPI_Request *request, MPI_Status *status, MPI_Win win);

int AMPI_Iget_data(void *data, MPI_Status status);

3.7 Extensions for Interoperability

Interoperability between different modules is essential for coding coupled simulations. In this extension to
AMPI, each MPI application module runs within its own group of user-level threads distributed over the
physical parallel machine. In order to let AMPI know which ranks are to be created, and in what order, a
top level registration routine needs to be written. A real-world example will make this clear. We have an
MPI code for fluids and another MPI code for solids, both with their main programs, then we first transform
each individual code to run correctly under AMPI as standalone codes. Aside from the global and static
variable privatization transformations needed, this also involves making the main program into a subroutine
and naming it MPI Main.

Thus now, we have two MPI Mains, one for the fluids code and one for the solids code. We now make
these codes co-exist within the same executable, by first renaming these MPI Mains as Fluids Main and
Solids Main7 writing a subroutine called MPI Setup.

!FORTRAN EXAMPLE

SUBROUTINE MPI_Setup

USE ampi

CALL AMPI_Register_main(Solids_Main)

CALL AMPI_Register_main(Fluids_Main)

END SUBROUTINE

//C Example

void MPI_Setup(){
7Currently, we assume that the interface code, which does mapping and interpolation among the boundary values of Fluids

and Solids domain, is integrated with one of Fluids and Solids.

20

AMPI_Register_main(Solids_Main);

AMPI_Register_main(Fluids_Main);

}

This subroutine is called from the internal initialization routines of AMPI and tells AMPI how many
numbers of distinct modules exist, and which orchestrator subroutines they execute.

The number of ranks to create for each module is specified on the command line when an AMPI program
is run. Appendix B explains how AMPI programs are run, and how to specify the number of ranks (+vp
option). In the above case, suppose one wants to create 128 ranks of Solids and 64 ranks of Fluids on 32
physical processors, one would specify those with multiple +vp options on the command line as:

> charmrun gen1.x +p 32 +vp 128 +vp 64

This will ensure that multiple modules representing different complete applications can co-exist within
the same executable. They can also continue to communicate among their own ranks using the same AMPI
function calls to send and receive with communicator argument as MPI COMM WORLD. But this would be
completely useless if these individual applications cannot communicate with each other, which is essential for
building efficient coupled codes. For this purpose, we have extended the AMPI functionality to allow multiple
“COMM WORLDs”; one for each application. These world communicators form a “communicator universe”: an
array of communicators aptly called MPI COMM UNIVERSE. This array of communicators is indexed [1 .
. . MPI MAX COMM]. In the current implementation, MPI MAX COMM is 8, that is, maximum of 8 applications
can co-exist within the same executable.

The order of these COMM WORLDs within MPI COMM UNIVERSE is determined by the order in which individual
applications are registered in MPI Setup.

Thus, in the above example, the communicator for the Solids module would be MPI COMM UNIVERSE(1)

and communicator for Fluids module would be MPI COMM UNIVERSE(2).
Now any rank within one application can communicate with any rank in the other application using the

familiar send or receive AMPI calls by specifying the appropriate communicator and the rank number within
that communicator in the call. For example if a Solids rank number 36 wants to send data to rank number
47 within the Fluids module, it calls:

!FORTRAN EXAMPLE

INTEGER , PARAMETER :: Fluids_Comm = 2

CALL MPI_Send(InitialTime, 1, MPI_Double_Precision, tag,

47, MPI_Comm_Universe(Fluids_Comm) , ierr)

//C Example

int Fluids_Comm = 2;

ierr = MPI_Send(InitialTime, 1, MPI_DOUBLE, tag,

47, MPI_Comm_Universe(Fluids_Comm));

The Fluids rank has to issue a corresponding receive call to receive this data:

!FORTRAN EXAMPLE

INTEGER , PARAMETER :: Solids_Comm = 1

CALL MPI_Recv(InitialTime, 1, MPI_Double_Precision, tag,

36, MPI_Comm_Universe(Solids_Comm) , stat, ierr)

//C Example

int Solids_Comm = 1;

ierr = MPI_Recv(InitialTime, 1, MPI_DOUBLE, tag,

36, MPI_Comm_Universe(Solids_Comm) , &stat);

21

3.8 Extensions for Sequential Re-run of a Parallel Node

In some scenarios, a sequential re-run of a parallel node is desired. One example is instruction-level accurate
architecture simulations, in which case the user may wish to repeat the execution of a node in a parallel
run in the sequential simulator. AMPI provides support for such needs by logging the change in the MPI
environment on a certain processors. To activate the feature, build AMPI module with variable “AMPIMS-
GLOG” defined, like the following command in charm directory. (Linking with zlib “-lz” might be required
with this, for generating compressed log file.)

> ./build AMPI netlrts-linux-x86_64 -DAMPIMSGLOG

The feature is used in two phases: writing (logging) the environment and repeating the run. The first
logging phase is invoked by a parallel run of the AMPI program with some additional command line options.

> ./charmrun ./pgm +p4 +vp4 +msgLogWrite +msgLogRank 2 +msgLogFilename "msg2.log"

In the above example, a parallel run with 4 worker threads and 4 AMPI ranks will be executed, and the
changes in the MPI environment of worker thread 2 (also rank 2, starting from 0) will get logged into diskfile
”msg2.log”.

Unlike the first run, the re-run is a sequential program, so it is not invoked by charmrun (and omitting
charmrun options like +p4 and +vp4), and additional command line options are required as well.

> ./pgm +msgLogRead +msgLogRank 2 +msgLogFilename "msg2.log"

3.9 User Defined Initial Mapping

You can define the initial mapping of virtual processors (vp) to physical processors (p) as a runtime option.
You can choose from predefined initial mappings or define your own mappings. The following predefined
mappings are available:

Round Robin This mapping scheme maps virtual processor to physical processor in round-robin fashion,
i.e. if there are 8 virtual processors and 2 physical processors then virtual processors indexed 0,2,4,6 will
be mapped to physical processor 0 and virtual processors indexed 1,3,5,7 will be mapped to physical
processor 1.

> ./charmrun ./hello +p2 +vp8 +mapping RR MAP

Block Mapping This mapping scheme maps virtual processors to physical processor in ranks, i.e. if there
are 8 virtual processors and 2 physical processors then virtual processors indexed 0,1,2,3 will be mapped
to physical processor 0 and virtual processors indexed 4,5,6,7 will be mapped to physical processor 1.

> ./charmrun ./hello +p2 +vp8 +mapping BLOCK MAP

Proportional Mapping This scheme takes the processing capability of physical processors into account
for mapping virtual processors to physical processors, i.e. if there are 2 processors running at different
frequencies, then the number of virtual processors mapped to processors will be in proportion to their
processing power. To make the load balancing framework aware of the heterogeneity of the system,
the flag +LBTestPESpeed should also be used.

> ./charmrun ./hello +p2 +vp8 +mapping PROP MAP

> ./charmrun ./hello +p2 +vp8 +mapping PROP MAP +balancer GreedyLB +LBTestPESpeed

If you want to define your own mapping scheme, please contact us for assistance.

22

3.10 Performance Visualization

AMPI users can take advantage of Charm++’s tracing framework and associated performance visualization
tool, Projections. Projections provides a number of different views of performance data that help users
diagnose performance issues. Along with the traditional Timeline view, Projections also offers visualizations
of load imbalance and communication-related data.

In order to generate tracing logs from an application to view in Projections, link with ampicc -tracemode

projections.
AMPI defines the following extensions for tracing support:

AMPI_Trace_begin AMPI_Trace_end

AMPI_Trace_register_function_name AMPI_Trace_register_function_id

AMPI_Trace_start_function_name AMPI_Trace_start_function_id

AMPI_Trace_end_function_name AMPI_Trace_end_function_id

When using the Timeline view in Projections, AMPI users can visualize what each VP on each processor
is doing (what MPI method it is running or blocked in) by clicking the View tab and then selecting Show
Nested Bracketed User Events from the drop down menu. See the Projections manual for information on
performance analysis and visualization.

3.11 Compiling AMPI Programs

AMPI provides a cross-platform compile-and-link script called ampicc to compile C, C++, and Fortran
AMPI programs. This script resides in the bin subdirectory in the Charm++ installation directory. The
main purpose of this script is to deal with the differences of various compiler names and command-line
options across various machines on which AMPI runs. It is recommended that the AMPI compiler scripts
be used to compile and link AMPI programs. One major advantage of using these is that one does not have
to specify which libraries are to be linked for ensuring that C++ and Fortran90 codes are linked together
correctly. Appropriate libraries required for linking such modules together are known to ampicc for various
machines.

In spite of the platform-neutral syntax of ampicc, one may have to specify some platform-specific options
for compiling and building AMPI codes. Fortunately, if ampicc does not recognize any particular options on
its command line, it promptly passes it to all the individual compilers and linkers it invokes to compile the
program. See the appendix for more details on building and running AMPI programs.

A Installing AMPI

AMPI is included in the source distribution of Charm++. To get the latest sources from PPL, visit:
http://charm.cs.illinois.edu/software

and follow the download links. Then build Charm++ and AMPI from source.
The build script for Charm++ is called build. The syntax for this script is:

> build <target> <version> <opts>

For building AMPI (which also includes building Charm++ and other libraries needed by AMPI), specify
<target> to be AMPI. And <opts> are command line options passed to the charmc compile script. Common
compile time options such as -g, -O, -Ipath, -Lpath, -llib are accepted.

To build a debugging version of AMPI, use the option: -g. To build a production version of AMPI, use
the option: --with-production.

<version> depends on the machine, operating system, and the underlying communication library one
wants to use for running AMPI programs. See the charm/README file for details on picking the proper
version. Here is an example of how to build a debug version of AMPI in a linux and ethernet environment:

> build AMPI netlrts-linux-x86_64 -g

23

And the following is an example of how to build a production version of AMPI in a linux and ethernet
environment, with MPI-level error checking in AMPI turned off:

> build AMPI netlrts-linux-x86_64 --with-production --disable-ampi-error-checking

AMPI ranks are implemented as user-level threads with a stack size default of 1MB. If the default is not
correct for your program, you can specify a different default stack size (in bytes) at build time:

> build AMPI netlrts-linux-x86_64 --with-production -DTCHARM_STACKSIZE_DEFAULT=16777216

The same can be done for AMPI’s RDMA messaging threshold using AMPI RDMA THRESHOLD DEFAULT

and, for messages sent within the same address space (ranks on the same worker thread or ranks on different
worker threads in the same process in SMP builds), using AMPI SMP RDMA THRESHOLD DEFAULT. Contiguous
messages with sizes larger than the threshold are sent via RDMA on communication layers that support this
capability. You can also set the environment variables AMPI RDMA THRESHOLD and AMPI SMP RDMA THRESHOLD

before running a job to override the default specified at build time.

B Building and Running AMPI Programs

B.1 Building

AMPI provides a compiler called ampicc in your charm/bin/ directory. You can use this compiler to build
your AMPI program the same way as other compilers like cc. All the command line flags that you would
use for other compilers can be used with the AMPI compilers the same way. For example:

> ampicc -c pgm.c -O3

> ampif90 -c pgm.f90 -O0 -g

> ampicc -o pgm pgm.o -lm -O3

To use Isomalloc for transparently migrating user heap data, link with -memory isomalloc. To use a
Charm++ load balancer, link a strategy or a suite of strategies in with -module <LB>. For example:

> ampicc pgm.c -o pgm -O3 -memory isomalloc -module CommonLBs

B.2 Running

The Charm++ distribution contains a script called charmrun that makes the job of running AMPI programs
portable and easier across all parallel machines supported by Charm++. charmrun is copied to a directory
where an AMPI program is built using ampicc. It takes a command line parameter specifying number of
processors, and the name of the program followed by AMPI options (such as number of ranks to create,
and the stack size of every user-level thread) and the program arguments. A typical invocation of an AMPI
program pgm with charmrun is:

> charmrun +p16 ./pgm +vp64

Here, the AMPI program pgm is run on 16 physical processors with 64 total virtual ranks (which will be
mapped 4 per processor initially).

To run with load balancing, specify a load balancing strategy. If Address Space Layout Randomization is
enabled on your target system, you may need to add the flag +isomalloc sync when running with migration.
You can also specify the size of user-level thread’s stack using the +tcharm stacksize option, which can be
used to decrease the size of the stack that must be migrated, as in the following example:

> charmrun +p16 ./pgm +vp128 +tcharm_stacksize 32K +balancer RefineLB

24

	Introduction
	Overview
	Terminology

	Charm++
	AMPI
	AMPI Compliance to MPI Standards
	Name for Main Program
	Fortran
	C or C++

	Global Variable Privatization
	Automatic Globals Swapping
	Manual Change
	Source-to-source Transformation
	TLS-Globals

	Extensions for Migrations
	Registering User Data
	Migration
	Packing/Unpacking Thread Data

	Extensions for Checkpointing
	Extensions for Memory Efficiency
	Extensions for Interoperability
	Extensions for Sequential Re-run of a Parallel Node
	User Defined Initial Mapping
	Performance Visualization
	Compiling AMPI Programs

	Installing AMPI
	Building and Running AMPI Programs
	Building
	Running

