

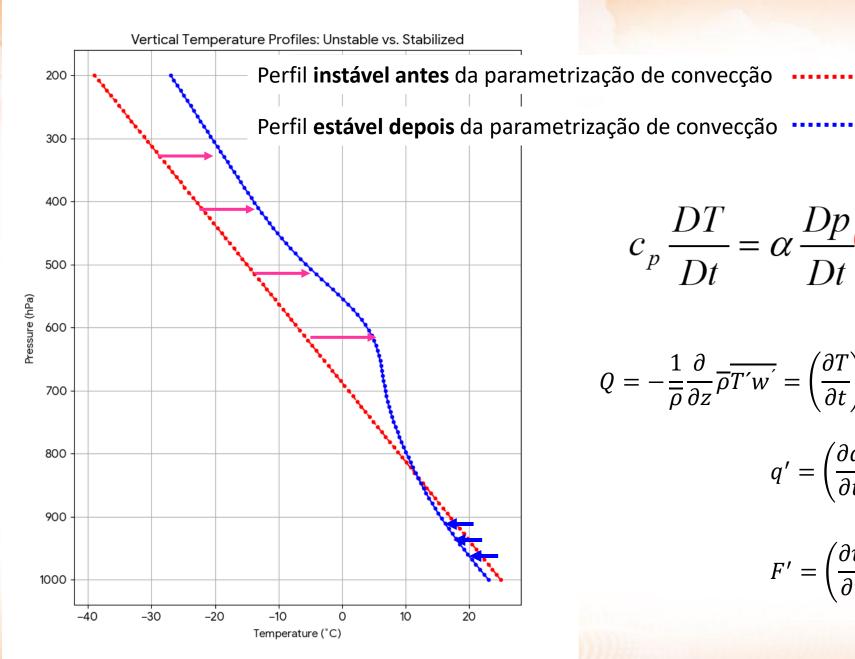
Parametrização de convecção cumulus e Microfísica de nuvens

Chou Sin Chan

Chou.chan@inpebr

Qual o papel da parametrização de convecção cumulus em um modelo numérico?

- 1. Mistura convectiva >> reduzir a instabilidade convectiva
- 2. Produção de chuva convectiva


De que forma a parametrização atua?

- 1. Modifica perfil de temperatura
- 2. Modifica perfil de umidade
- 3. Modifica perfil de vento

$c_p \frac{DT}{Dt} = \alpha \frac{Dp}{Dt} + Q$

1ª Lei termodinâmica

$$Q = -\frac{1}{\overline{\rho}} \frac{\partial}{\partial z} \overline{\rho} \overline{T'w'} = \left(\frac{\partial T}{\partial t}\right)_{Convection}$$
$$q' = \left(\frac{\partial q}{\partial t}\right)_{Convection}$$

Contribuição da convecção cumulus na temperatura, umidade e momentum

$$F' = \left(\frac{\partial u}{\partial t}\right)_{Convection}$$

(contribuição diabática)

Tipos de esquema de parametrização de convecção cumulus

Adjustment

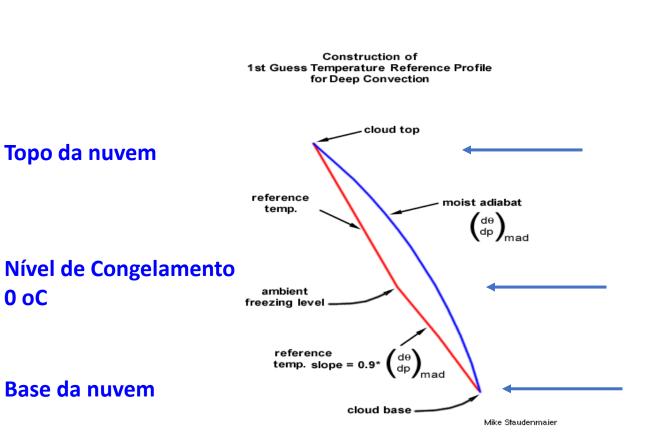
Kuo (1974), Betts-Miller (1986), Janjic (1994)

Existe um perfil típico de temperatura e umidade na presença de nuvens convectivas

O perfil do modelo é relaxado em direção ao perfil típico

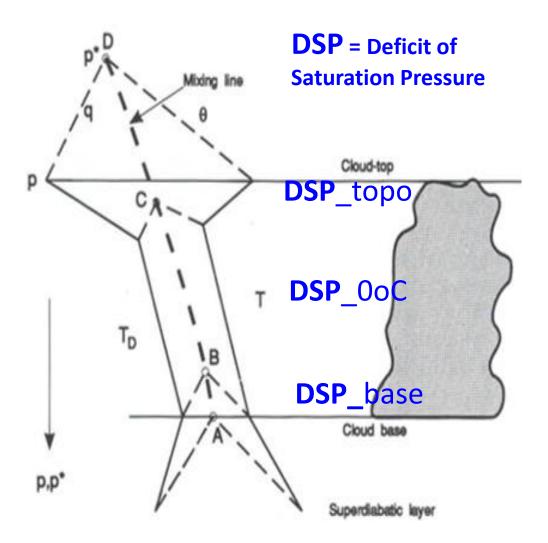
Mass-flux:

Arakawa-Schubert (1974), Fritsch-Chappell (1980), Tiedtke (1989), Kain-Fritsch (1993) Emanuel (1993)


A nuvem é uma pluma que sofre misturas laterais

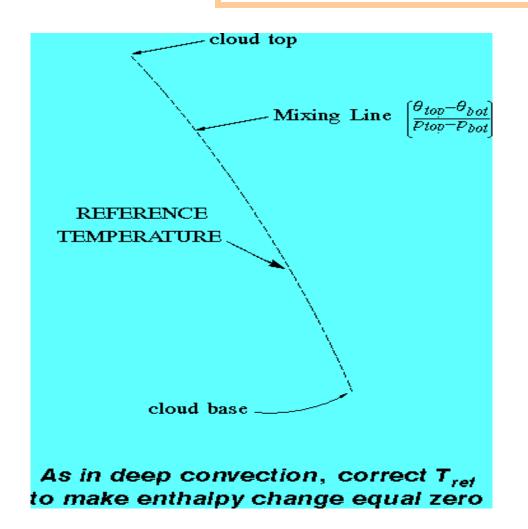
equação da continuidade, nuvem em estado permanente, quasi-equilibrium

Identifica-se 3 partes


- 1. Condição de disparo do esquema (trigger)
- 2. Representação da nuvem (Convective cloud)
- 3. Fechamento (Closure)

Esquema de convecção cumulus Betts-Miller-Janjic

Definição do perfil de temperatura


0 oC

Definição do perfil de umidade

Esquema de convecção cumulus Betts-Miller-Janjic

CONVECÇÃO RASA: convecção sem precipitação

- Aplicado em pontos onde a profundidade da nuvem é maior que 10hPa e menor que 0.2xPsfc
- Pelo menos 2 camadas
- · pontos em que:
 - precipitation < 0
 - entropy change < 0

Esquema de convecção cumulus Betts-Miller-Janjic

T old: Temperatura inicial do ambiente

T ref: Temperatura do perfil da nuvem

Tnew: Temperatura do perfil da nuvem após aplicar esquema de convecção cumulus

T: Tempo de relaxação convectiva

T´ = em função de eficiência de chuva

Produção de precipitação

$$T_{new} = T_{old} + \frac{\Delta t_{cnv}}{\tau} \left[T_{ref} - T_{old} \right]$$

$$\Delta t_{cnv} = 4 * \Delta t$$

$$\tau = 3000s$$

Por ex. 2400 and 3600 seg

$$P = \frac{1}{\rho_{w}g} \frac{\Delta t_{cnv}}{\tau} \sum_{base}^{top} (q_{ref} - q)(p_{s} - p_{t})$$

Esquema de convecção cumulus Fluxo de Massa

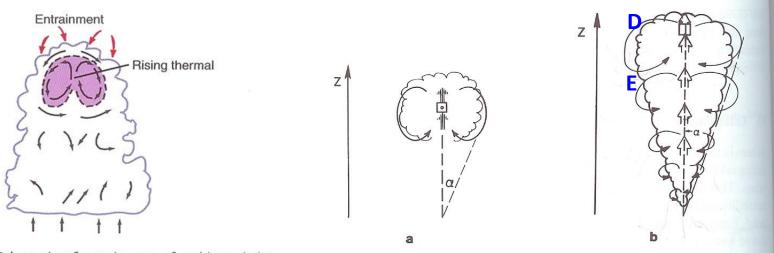
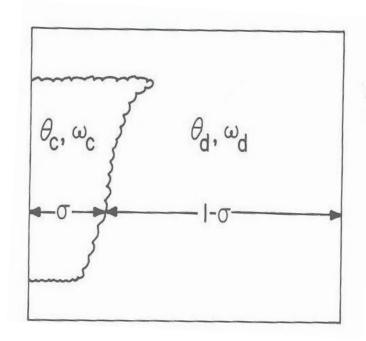



Fig. 6.12 Schematic of entrainment of ambient air into a small cumulus cloud. The thermal (shaded violet region) has in cumuli. (b) Schematic view of the "steady-state jet" model of lateral entrainment in cumuli. ascended from cloud base. [Adapted from J. Atmos. Sci. 45 3957 (1988).]

Fig. 8.33. (a) Schematic view of the "bubble" or "thermal" model of lateral entrainment

- Entranhamento lateral (E): Injeção do ar ambiente na nuvem. Diluição da nuvem a partir do topo da nuvem.
- Detranhamento (D): Água ou gelo da nuvem perdido para o ambiente. As gotículas da nuvem evaporam no ambiente subsaturado, o ambiente da nuvem é resfriado pela evaporação, e a nuvem ganha mais flutuação (empuxo).

- Fração de área ocupada pela nuvem
- $1\!-\!\sigma$ Fração de área sem nuvem

Esquema de convecção cumulus Fluxo de Massa

 $\,M\,\,$ Fluxo de massa médio na caixa da grade do modelo

 $M_{_{\it o}}$ Fluxo de massa do ambiente

 $M_{\scriptscriptstyle c}$ Fluxo de massa de todas as nuvens

$$\overline{\rho w} = \sigma \overline{\rho} w_c + (1 - \sigma) \overline{\rho} w_e$$

$$\overline{M} = M_c + M_e$$

Modelo de nuvem : Conservação de massa

$$\frac{\partial \rho_d}{\partial t} + \nabla \cdot (\rho_d V) = 0$$

Nuvem em estado permanente

Fonte de massa E e sumidouro de massa D

$$\frac{\partial \rho w_c}{\partial z} = E - L$$

$$\frac{\partial M_c}{\partial z} = E - D$$

Modelo de nuvem forma de fluxo de massa

$$\frac{\partial M_c}{\partial z} = E - D$$

$$\frac{\partial (M_c s_c)}{\partial z} = E \bar{s} - D s_c + L \rho c$$

$$\frac{\partial (M_c q_c)}{\partial z} = E \bar{q} - D q_c - \rho c$$

$$\frac{\partial (M_c l)}{\partial z} = -D l + \rho c - \rho k l$$

$$S = CpT+gz$$

Esquema de convecção cumulus Fluxo de Massa

- Inclusão de downdrafts
- Definição de *E* e *D*
- Definição do fluxo na base da nuvem
- Definição do fechamento (Closure)

$$\left(\frac{\partial s}{\partial t}\right)_{convec} = -\frac{1}{\overline{\rho}} \frac{\partial [M_c(s_c - \overline{s})]}{\partial z} + L(c - e)$$

$$\left(\frac{\partial q}{\partial t}\right)_{convec} = -\frac{1}{\overline{\rho}} \frac{\partial [M_c(q_c - \overline{q})]}{\partial z} - (c - e)$$

$$\left(\frac{\partial u}{\partial t}\right)_{convec} = -\frac{1}{\overline{\rho}} \frac{\partial [M_c(u_c - \overline{u})]}{\partial z}$$

Qual o papel da parametrização de microfísica de nuvens em um modelo numérico?

- 1. Interação com a radiação atmosférica >> modifica o balanço de energia
- Remoção de supersaturação nos pontos de grade
- Redistribuição da umidade em pontos estáveis para a convecção
- 4. Produção de precipitação >> modifica o balanço de água
- Identificação do precipitação
- Fração de cobertura de nuvem

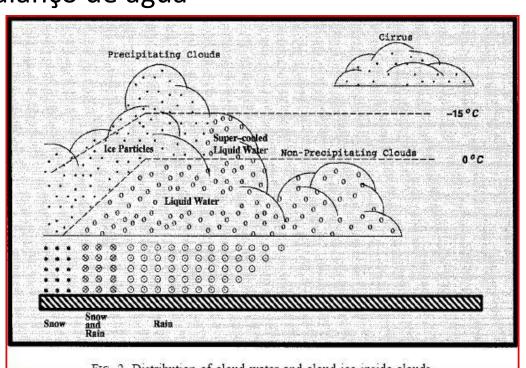


FIG. 2. Distribution of cloud water and cloud ice inside clouds.

Nucleação

Formação das Gotas de Nuvens

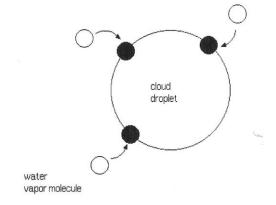
- A parcela de ar sobe e resfria até a saturação no Nível de Condensação por Levantamento,
- Núcleos de Condensação de Nuvens (Cloud Condensation Nuclei) são ativados,
- Um maior número de CCN são ativados em regiões de umidade relativa mais altas,
- A pressão de saturação do vapor decresce com a continua ascensão e resfriamento – a parcela começa a ficar supersaturada.
- Exemplos de CCN: sal marinho, poeira, etc

Nuvens Frias – Nucleação do Gelo

- Gelo se forma sobre os núcleos de gelo "Ice Nuclei (IN)"
- IN possuem a habilidade de atuar como uma superfície para os cristais de gelo iniciarem o crescimento a partir da água nas fases líquida e vapor.
- IN são ativados em função da temperatura

IN e temperatura de ativação

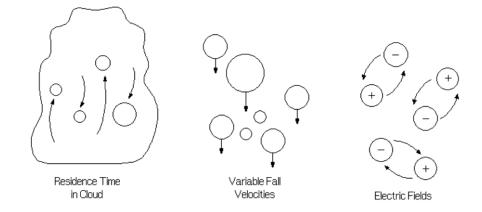
➤ Iodeto de Prata: -4oC


Poeira: -9oC

Cinza Vulcânica: -13oC

Processos de Crescimento das Gotas - Nuvens Quentes

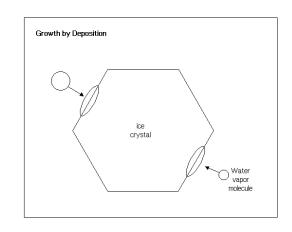
Cloud Droplet Growth by Condensation


1. Condensação – Difusão

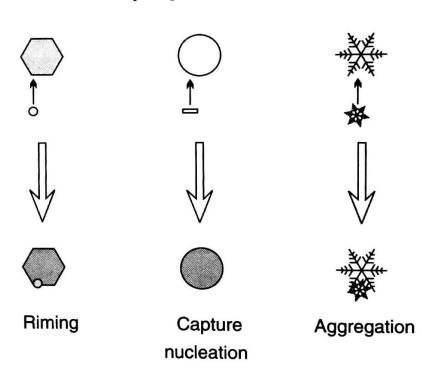
Vapor é transportado da maior para a menor pressão de saturação

2. Colisão e coalescência

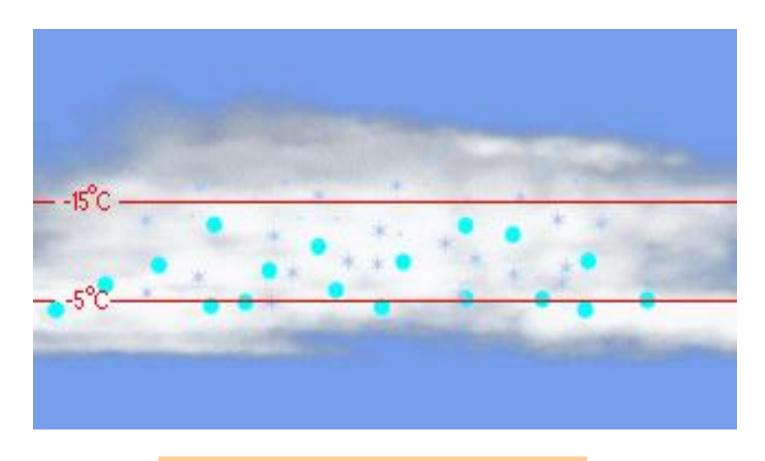
- Colisão inicia em gota r > 18 mícrons
- Eficiência da colisão aumenta com o aumento do tamanho da gota
- Nem todas as colisões resultam em coalescência



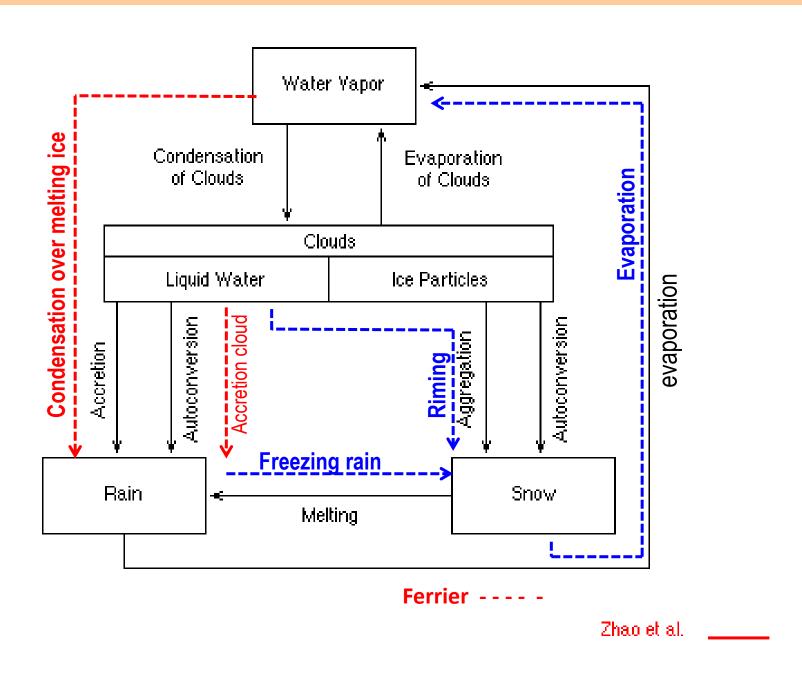
3. Derretimento do gelo


Processos de Crescimento dos Cristais de Gelo - Nuvens Frias

- Crescimento por deposição: Vapor de água condensa sobre as particulas de IN e congelam;
- Crescimento por contato: IN inicia um cristal de gelo assim que entra em contato com uma gota de água supergelada;
- Crescimento por congelamento: congelamento das gotas de água supergelada;


- ➤ **Riming:** de gotas de nuvens : partícula na fase de gelo atinge um tamanho suficiente para iniciar a queda e coleta gotas supergeladas, que congelam, pode resultar em granizo
- > Agregação: partículas de gelo de unem para formar um floco de neve

9.2 Particle fallspeeds



Growth by Deposition

upper to middle portion of the cloud

Cloud Microphysics processes in the Eta Model

Processos de microfísica das nuvens

RAUT: Cloud water autoconversion to rain (T>0)

RACW: Cloud water collection (accretion) by rain (T >0)

REVP: Rain evaporation (T < 0)

CND: Condensation (>0) or evaporation (<0) of cloud water

IDEP: Deposition (>0) or sublimation (<0) of ice crystals

IACW: Cloud water collection (riming) by precipitation ice (T>0)

IACWR: Shedding of accreted cloud water to form rain (T >0)

IACR: Freezing of rain onto large ice at supercooled temp (T >0)

ICND: Condensation (>0) onto wet, melting ice

IEVP: Evaporation (<0) from wet, melting ice

IMLT: Melting ice (T > 0)

Water conversions

Water Vapor (Qv)	Snow (Qs)	Rain (Qr)	Cloud (Qc)	Ice (Qi)
condensation	sublimation	accretion	accretion	initiation
evaporation	accretion	autoconversion	autoconversion (into rain)	sublimation
ice initiation	autoconversion (from ice)	evaporation	condensation	deposition
deposition (onto ice crystals)	freezing (from rain)	freezing (to snow)	freezing (to ice)	melting (to cloud)
	melting (to rain)	melting (from snow)	melting (from ice)	freezing cloud
				accretion
				autoconversion

$$q_t = q_v + q_s + q_r + q_c + q_i$$

Explicit, prognostic variables

Obrigada !!!

