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1 Background and introduction

The Amazon offers favorable conditions for the development of deep convection that is orga-
nized in mesoscale convective systems (MCS). In northern South America, MCS occurrence is
related to Amazon coastal squall lines. Amazon coastal squall lines are observed in satellite im-
agery as discontinuous clusters of convective cells along the northern coast of South America,
developed on the sea-breeze circulation, organized on the mesoscale, and considered one of the
main rain-producing systems in the region (Garstang et al., 1994; Cohen; SILVA DIAS; Nobre,
1995). Because of the role the Amazon plays on the regional weather and climate, numerous
studies have been conducted using observations derived from field campaigns held in the Ama-
zon, meteorological satellites, in situ sources, reanalyses, and numerical models providing the
scientific community with a better understanding of processes at various scales. In particular,
the data collected during field campaigns, such as the Amazon Boundary Layer Experiment
(ABLE) field campaign (Garstang et al., 1990), the Large-Scale Biosphere-Atmosphere Exper-
iment (LBA) (Keller et al., 2004) and more recently the GoAmazon2014/5 experiment (Martin
et al., 2016), have been invaluable in providing large amounts of data that otherwise would not
be possible to obtain. The results from these field campaigns have greatly improved the knowl-
edge and understanding of the atmospheric chemistry of the Amazon as well as the dynamics,
environmental conditions, structure, rainfall characteristics, and life cycle of convective sys-
tems that occur in the Amazon basin. However, despite all these efforts, the deep convection
and diurnal cycles of precipitation and convection in the Amazon region are not satisfactorily
simulated by the models. As global numerical models increase the horizontal resolution and
more numerical weather prediction (NWP) centers are concentrating their efforts on unified
models, it is important to examine what is the current capability of regional and convection-
allowing model to represent a wide variety of phenomena. Currently, the National Oceanic and
Atmospheric Administration (NOAA) is transitioning toward a unified model in which the same
dynamical core is used for all applications, from global to convective scale through the Unified
Forecast System effort (UFS1. The Rapid Refresh Forecast System (RRFS), the UFS applica-
tion for regional and convective scales, is intended to cover a similar domain as the operational
Rapid Refresh (RAP), imposing the need to investigate the capability of the prototype RRFS to
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represent convection over part of northern South America and the Atlantic Ocean. In particular,
the initiation and development of Amazon coastal squall lines can give insight to the capabilities
of RRFS over areas with low data density.

In this study, the data assimilation framework for the prototype RRFS is assessed and impacts
on forecasts of an Amazon coastal squall line case study are investigated. Overall, this study
examines to what extent the assimilation of few and sparse data can have a positive impact in
the RRFS analyses over this region. Due to data availability issues along with a lack of severe
weather reports in this region, a methodology is employed for the selection of a case study. This
methodology follows Oliveira and Oyama (2015) in an attempt to create an objective algorithm
to identify squall lines in the outputs of the tracking system ForTraCC (Vila et al., 2008). Once
the case is selected, sensitivity tests using RRFS are performed. Different configurations in
the Gridpoint Statistical Interpolation (GSI; Wu, Purser and Parrish (2002)) are tested, such
as various ensemble background error covariance weights in hybrid analyses, supersaturation
removal, the planetary boundary layer (PBL) pseudo-observations function, as well as varied
observation types. Two physics suites are tested: one based on the Global Forecast System
(GFS) version 15 physics (GFSv15) and a suite based on the High Resolution Rapid Refresh
(HRRR) physics (RRFS PHY v1a). Forecasts are assessed using the Model Evaluation Tools
(MET), which is the unified verification package that will be used by UFS applications (Brown
et al., 2021). Although the area studied has low density data coverage, results show that large
scale patterns are well captured in all experiments and the forecasts are improved when using
data assimilation.

2 Methodology

2.1 Case study selection

Unlike in the mid-latitudes, seasons in the tropics are defined following rainfall frequency rather
than temperature. The methodology proposed in Marengo et al. (2001), based on the compu-
tation of pentads (5-days average) of accumulated precipitation, is applied in this research. It
focuses on determining the onset of the rainy (dry) season as the pentad with daily average pre-
cipitation greater (less) than 4.5 mm day−1 and this value remains above (below) 4.5 mm day−1

in the 6 to 8 subsequent pentads. Prior to pentads indicating the initial (ending) date, the values
of pentads with daily average precipitation must be more (less) than 3.5 mm day−1 in the sub-
sequent 6 to 8 pentads. This computation is performed for the area in the mouth of the Amazon
River using the MERGE product from CPTEC (Rozante, 2017). Following this methodology,
the dry season of 2020 near the mouth of the Amazon is first found in the pentad centered on
21 June and ends in the pentad centered on 29 October. This means that the onset of the 2020
dry season occurred inside the earliest limits suggested by Marengo et al. (2001), while the end
occurred slightly earlier than the range considered in the climatological values. ForTraCC is
then executed for the period between 21 June and 29 October 2020.

ForTraCC is an algorithm for tracking and predicting the morphological and radiative charac-
teristics of convective systems using infrared channel images from GOES satellites (Vila et al.,
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2008). Images from the GOES-16 infrared channel 13 with spatial resolution of 2 × 2 km and
temporal resolution of 10 minutes are used for the tracking of the convective systems. Prior
to the execution of ForTraCC, a quality control procedure is applied to the GOES imagery in
which images with temperatures below 180 K are removed. Convective systems with initiation
inside the limits of the Amazon basin are selected for further analyses (Fig.1). The monthly
spatial distribution for July, August, September, and October is presented in Fig. 1. The few
days from June that are inside the dry season range are not considered in this monthly analy-
sis. During the four months analyzed, the preferred region of initiation varies slightly from the
north and northwest in July, to be more concentrated on the northwest in September, to spread
toward the west and slightly to the central and southern region, to then completely spread toward
the central and eastern Amazon with some spread over the south. Over the northern Amazon,
there are convective systems initiating throughout the four months, however, July is the month
with the most convective genesis. These results are in agreement with previous studies such as
Cohen, SILVA DIAS and Nobre (1995).

Figure 1: Spatial distribution of the preferred regions of genesis of convective systems for (a) July, (b)
August, (c) September, and (d) October.

According to Cohen, SILVA DIAS and Nobre (1995), the formation region for Amazon coastal
squall lines is between the latitudes 10◦N and 5◦S, south of the Intertropical Convergence Zone
(ITCZ) during the dry season. The results shown in Fig. 1 confirm that finding and therefore
determines the source region considered in this study. After it is verified that convective systems
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had genesis inside the source region, they are filtered according to their morphological charac-
teristics as proposed by Oliveira and Oyama (2015). Figure 2a shows that this methodology is
able to identify the main convective systems associated with cases of Amazon squall lines. The
linear organization along the coastline as the system evolves is well identified by the algorithm.
However, there are two points that need to be considered. The first is that Amazon coastal squall
lines can reach the synoptic scale with the form of a discontinuous or arc of discrete clusters of
cells (Garstang et al., 1994), and second is that new cells can be developed as part of the squall
line circulation (interaction between the updrafts and downdrafts), and be identified by For-
TraCC as a separate system rather than as part of the whole system. Two examples are shown
in Figs. 2b–c of convective systems tracked in ForTraCC for which hour and longitude genesis
are very close to the main system in Fig. 2a. With a visual analysis of the satellite imagery,
it is possible to identify that these other systems are part of the same Amazon coastal squall
line that reached synoptic dimensions, with new convection being developed at different times.
Therefore, with this current methodology, a subjective analysis is still needed to complement
the information obtained with ForTraCC.

Figure 2: Tracked convective systems associated with an Amazon coastal squall line from ForTraCC
outputs using the modified objective method.

2.2 Case overview

The Amazon coastal squall line case previously presented is selected for the numerical simu-
lations of this study. Figure 3 shows the initiation and evolution of the convection associated
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with this system. Some of the initial cells are observed between French Guiana, the state of
Macapa, and northern Para in Brazil. Between 19:00 UTC and 21:00 UTC, more cells develop
and a line of discontinuous convective storms is observed along the coast in the satellite im-
ages. The strongest convection occurs at 23:00 UTC, and it is also observed that the stratiform
part has widened. This cloud band, with a northwest-southeast orientation, slowly propagates
inland from northeast to southwest. Some inner clusters have very cold cloud tops (white shade
indicates temperatures lower than -75◦K) indicating possible overshootings and that deep con-
vection is occurring. At 01:00 UTC the line has propagated farther inland and some clusters
have decreased their intensity while some are still are very deep. 4 hours later, at 05:00 UTC,
the squall line is farther into the continent and later seems to merge with other convective sys-
tems in the area. The convection associated with the squall line continues to propagate toward
the southwest Amazon, but it loses its linear characteristics. Over the Atlantic ocean, there is
strong convection associated with the ITCZ.

Figure 3: Brightness temperature from the GOES-16 infrared 13 channel from 17:00 UTC on 5 July
2020 through 01:00 UTC on 6 July 2020 every 2 hours (a, b, c, d, and e) and at 05:00 UTC on 6 July
2020 (f).

2.3 Setup of the experiments

For the simulation of this case, a domain is configured using 1200 × 700 grid cells centered on
the coordinate point at 1◦N and 57◦W with 3 km horizontal grid spacing and 64 vertical layers.
The domain covers the area of formation and propagation of the squall line through the west-
ern Amazon. All simulations start at 00:00 UTC on 4 July 2020 and run 3-hourly cycles until
21:00 UTC on 6 July 2020. Analyses and forecasts from the GFS at 0.25◦ resolution are used to
generate the initial and lateral boundary conditions (ICs and LBCs) for the limited area model
capability based on the Finite Volume Cubed-Sphere (FV3) dynamical core (FV3LAM). Global
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Data Assimilation System (GDAS) observations are assimilated in each experiment along with
Global Navigation Satellite System (GNSS) radio occultation (GNSSRO) bending angles and
satellite radiances. The time window used is 3 hours, allowing for observations within 1 hour
and 30 minutes before to 1 hour and 30 minutes after the analysis time to be assimilated. Ex-
periments are conducted testing the GSI 3DVar and 3DEnVar systems. For the hybrid 3DEnVar
analysis, the GDAS 80 member ensemble forecasts (9 h forecasts) are used to provide the en-
semble background error covariance (e.g., Wu et al. (2017)).

2.4 Cycling configuration

The current cycling configuration of the prototype RRFS is similar to the one used in RAP,
i.e. cold starts are performed every 12 hours and warm starts are performed at all other cycles
using the 1 h forecast from the previous cycle as background for the analysis. However, instead
of hourly cycles, 3 hourly cycles are performed considering the available resources (observa-
tions, analyses, and forecasts) to provide model initial and boundary conditions. The 3 hourly
cycling strategy is configured using GFS ICs and LBCs and GDAS observations. Cold starts
are similarly performed every 12 hours at 00:00 and 12:00 UTC and warm starts are performed
at all other cycles using the FV3LAM 3 h forecast from the previous cycle as background for
the analysis. In each cycle, a 24 h free forecast is launched following the analysis, with hourly
outputs. Figure 4 illustrates the RRFS cycling configuration from cycles initialized between
00:00 UTC through 18:00 UTC.
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Figure 4: Diagram of the 3-hourly cycling configuration for RRFS for the case study over northern South
America (SA).

2.5 Sensitivity experiments

A series of experiments are designed to examine the impact of different configurations on the
analyses and forecasts. An experiment with no data assimilation is provided, acting as the
baseline for all other experiments. This baseline experiment is called NoDAsa and uses the
same cycling configuration as experiments with data assimilation, in terms of initialization
type. In order to select the appropriate physics suite for this study, two NoDAsa experiments are

6



conducted testing the RRFS PHY v1a and GFSv15 physics suites available in the UFS Short
Range Weather Application (SRW; UFS Development Team (2021)). Figure 5 shows precipi-
tation forecasts from these experiments when run without data assimilation. 1 h accumulated
precipitation estimations from CMORPH are used for comparison. The ccpp HRRR physics
suite shows smaller coverage than ccpp GFSv15, but it captures the main precipitating patterns
shown in the observations and with more accurate intensity and scattered patterns compared
to the precipitation estimates. The ccpp GFSv15 physics suite overestimates the accumulated
precipitation in terms of coverage and the intensity, especially at the 6 h forecasts. Therefore,
the suite based on HRRR physics is selected for all experiments.

Figure 5: 2, 4, and 6 h forecasts of 1 h accumulated precipitation from experiments ccpp HRRR (d, e,
and f) and ccpp GFSv15 (g, h, and i), initialized at 19:00 UTC on 4 July 2020 and the precipitation
estimates from CMORPH at valid hours 17:00, 19:00, and 21:00 UTC (a, b, and c), respectively.

Table 1 lists all experiments in which GSI options are tested. Pure ensemble background er-
ror covariance, a combination of 85 % ensemble and 15 % static background error covariance,
and 3DVar are examined in experiments 100EnBECsa, 85EnBECsa, and 3DVarsa, respectively.
The experiment HL330sa is conducted by changing the horizontal localization radius to 330 km
and keeping a vertical localization radius of 3 layers. The experiment VL9sa is then con-
ducted by increasing the vertical localization radius to 9 layers and maintaining the original
horizontal localization radius of 110 km. Finally, a third experiment is conducted in which
both parameters are modified adopting a horizontal localization radius of 330 km and a vertical
localization radius of 9 layers. This experiment is called VL9HL330sa. The supersaturation
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removal function in GSI is tested for this case study with the experiment CLIPSATsa. The PBL
pseudo-observations function in GSI is tested in PSEUDOsa, which showed similar results to
85EnBECsa in all forecasts and statistics analyzed, and therefore the results are only shown in
the analysis of the quantitative precipitation in Sect. 3.5.

Table 1: List of experiments conducted testing different options in GSI in this study.

Experiments
BEC Supersat. PBL Localization

weights removal pseudo-obs. scales
NoDAsa No data assimilation

3DVarsa
0 % ensemble

false false
hloc=110 km

100 % static vloc=3 layers

100EnBECsa
100 % ensemble

false false
hloc=110 km

0 % static vloc=3 layers

85EnBECsa
85 % ensemble

false false
hloc=110 km

15 % static vloc=3 layers

VL9sa
85 % ensemble

false false
hloc=110 km

15 % static vloc=9 layers

HL330sa
85 % ensemble

false false
hloc=330 km

15 % static vloc=3 layers

VL9HL330sa
85 % ensemble

false false
hloc=330 km

15 % static vloc=9 layers

CLIPSATsa
85 % ensemble

true false
hloc=110 km

15 % static vloc=3 layers

PSEUDOsa
85 % ensemble

false true
hloc=110 km

15 % static vloc=3 layers

3 Summary of results

3.1 Examination of analyses

Data availability and coverage are the backbone of rapid updated analyses. Figure 6 presents
the spatial distribution of assimilated temperature (Fig. 6a), wind (Fig. 6b and c), and radiance
observations (Fig. 6d) at the 15:00 UTC cycle on 5 July 2020 for experiment 3DVarsa. The
analysis residuals are shown at each point. Temperature observations in Fig. 6a are from con-
ventional sources including radiosondes, surface marine observations such as buoys, synoptic
observations over land, and METAR reports. At most of the same locations, humidity and
surface pressure observations are also available. The conventional data is sparse and scattered
throughout the domain but have the lowest analysis residuals. In Fig. 6b, the winds are from
the same conventional sources and from scatterometers over the ocean (ASCATW). Satellite-
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derived winds are shown in Fig. 6c. Radiance observations from the MHS sensor from the
MetOp B satellite covering the western side of the domain are presented in Fig. 6d. The mean
root mean square (RMS) of the analysis residuals (OmA) in the bottom of each figure indicates
that radiances present the larger values. At upper levels the coverage is improved by nonconven-
tional sources. All these data combined have great potential to positively impact the analyses
and forecasts.

Figure 6: Spatial distribution of temperature (a), winds (b and c), and radiance (d) observations and
analysis residuals (OmA) for the analysis at 15:00 UTC on 5 July 2020 from the experiment 3DVarsa.
The color scale on the right indicates the magnitude of analysis residuals. The legend of observation type
markers is shown at the top along with brackets listing associated counts and RMS error for the OmA.
In the bottom of each panel is presented the total and averaged RMS of the OmA of all observations.

The RMS error and bias of the OmA and observation innovations (OmB) of the temperature
from all observation types for analyses in all cycles performed for experiments 85EnBECsa and
3DVarsa are shown in Fig. 7. The analyses created at each cycle are closer to the observations
with lower RMS and bias of the OmA values. Especially, the hybrid 3DEnVar with 85 % of the
ensemble error covariance shows less biased analyses when compared to 3DVarsa. However,
there is an evident diurnal cycle with an increase of the errors during the afternoon hours and a
decrease during the night and early morning. The RMS of the OmB shows an increase in the
first cycle after the model is cold started which may be related to the need of spin-up in the
cycling configuration. This occurs at cycles initialized at 03:00 UTC and 15:00 UTC followed
by a noticeable increase in the RMS of OmB values at 18:00 UTC. These results corroborate the
difficulty of predicting convection during the afternoon hours, which is more evident in these
experiments because of the lower coverage of surface data, as shown in the previous figure.

9



00:00
4 Jul

12:00
4 Jul

00:00
5 Jul

12:00
5 Jul

00:00
6 Jul

12:00
6 Jul

Analysis Hour (UTC)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Bi

as
RM

S
85EnBECsa(a)

RMS(OmB) [1.87]
RMS(OmA) [1.545]

Bias(OmB) [0.36]
Bias(OmA) [0.295]

00:00
4 Jul

12:00
4 Jul

00:00
5 Jul

12:00
5 Jul

00:00
6 Jul

12:00
6 Jul

Analysis Hour (UTC)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Bi
as

RM
S

3DVar(b)
RMS(OmB) [2.001]
RMS(OmA) [1.625]

Bias(OmB) [0.408]
Bias(OmA) [0.311]

Figure 7: RMS and bias of the temperature background (OmB) and analysis (OmA) against all observa-
tion types for analyses in all cycles performed for experiments (a) 85EnBECsa and (b) 3DVarsa.

3.2 The impact of hybrid ensemble weights

The benefits of using a hybrid 3DEnVar analysis is investigated for this case study. Figure 8
presents the temperature and specific humidity analysis increments for the 15:00 UTC cycle on
5 July 2020 for experiments 100EnBECsa, 85EnBECsa, and 3DVarsa. The increments are small
and more concentrated over certain points and some spread is observed in the surrounding areas.
This is expected due to the lower data coverage. In 3DVarsa, the increments are smoother than in
85EnBECsa and 100EnBECsa. Meanwhile, the increments in 100EnBECsa are slightly noisier
than those in 85EnBECsa. This indicates the effects of using the contribution from an ensemble
background error covariance in producing analyses with more flow-dependent characteristics.
Although not shown here, the results of the OmA and OmB statistics for these experiments
show lower RMS of the OmA in 85EnBECsa and 100EnBECsa when compared to 3DVar, with
85EnBECsa slightly better than 100EnBECsa.
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Figure 8: Analysis increment for temperature (K) (a, b, and c) and specific humidity (g kg−1) (d, e, and
f) at the first level above the surface for 15:00 UTC on 5 July 2020, for experiments 100EnBECsa (a and
d) 85EnBECsa (b and e), and 3DVarsa (c and f).

The 2, 4, and 6 h forecasts of 1 h accumulated precipitation from the 15:00 UTC cycle on 5 July
2020 are examined in Fig. 9 for experiments 100EnBECsa, 85EnBECsa, 3DVarsa, and NoDAsa
along with the precipitation estimates from the Climate Prediction Center (CPC) morphing tech-
nique (CMORPH) satellite precipitation estimates at valid hours 17:00, 19:00, and 21:00 UTC,
respectively. The experiments using RRFS correctly capture the the precipitation along the
coast from northern Para, Brazil to eastern Venezuela and the convection occurring over north-
ern Amazonas and Roraima, Brazil, and southeastern Venezuela. This indicates the ability of
the system in representing large scale conditions, which are better represented in experiments
using data assimilation. Data assimilation has a greater impact in the first 2 and 4 h forecasts
where those experiments show positive impacts over the experiment NoDAsa. Among the ex-
periments with data assimilation, 3DVarsa shows an overestimate of the intensity and coverage
of the precipitation at all forecasts lengths. Meanwhile, the experiment 85EnBECsa shows a
better agreement with the precipitation estimates than 100EnBECsa or 3DVarsa. At 4 h and
6 h forecasts, the experiment 100EnBECsa shows improvements in the precipitation coverage
along the coast as in other parts of the domain, but 85EnBECsa shows slightly better results.
All experiments overproduce precipitation over the ocean, especially in 3DVarsa.
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Figure 9: As in Fig. 5, but for experiments 100EnBECsa (d, e, and f), 85EnBECsa (g, h, and i), 3DVarsa
(j, k, and l), and NoDAsa (m, n, and o).

3.3 The impact of covariance localization

Similar to Fig. 8, Fig. 10 presents the analysis increments of temperature and specific hu-
midity for the 15:00 UTC cycle on 5 July 2020 but for experiments VL9sa, HL330sa, and
VL9HL330sa. For this case study, the increase of the vertical localization radius from 3 to
9 layers shows almost neutral impact in the analysis when compared to 85EnBECsa. However,
increasing the horizontal localization from 110 to 330 km shows a clear impact in the tempera-
ture and specific humidity analysis increments (Fig. 10b and e). Larger analysis increments, in
coverage and magnitude, are observed in many parts of the domain. Increments are also more
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detailed (less smooth) than increments in VL9sa. In the experiment VL9HL330sa (Fig. 10c and
f), in which both length scales are modified, the analysis increments are similar to HL330sa but
slightly less intense due to the change in the vertical localization. These results corroborate the
importance of covariance localization.

Figure 10: As in Fig. 8, but for experiments VL9sa (a and d), HL330sa (b and e), and VL9HL330sa (c
and f) at 15:00 UTC on 5 July 2020.

.

In order to investigate whether or not the adjustments in the temperature and specific humidity
analysis increments have also improved the forecasts, the precipitation forecasts are analyzed.
Figure 11 presents the 2, 4, and 6 h forecasts of 1 h accumulated precipitation as well as the
estimates from CMORPH. Overall, the results are similar, but improvements in precipitation
forecast along the coast are observed in the experiments with the increase of the horizontal
localization at all forecast lengths. A slightly better coverage of the precipitation is shown in
HL330sa and VL9HL330sa at 2 h forecast when compared to 85EnBECsa. At 4 and 6 h fore-
casts, the experiment VL9HL330sa show results that better match the precipitation estimates.
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Figure 11: As in Fig. 9, but for experiments 85EnBECsa (d, e, and f), VL9HL330sa (g, h, and i), HL330sa
(j, k, and l), and VL9sa (m, n, and o).

The RMSE and bias for the 3 h forecast of 2 m temperature (Fig. 12a and c) and 2 m dew point
temperature (Fig. 12b and d) for experiments 85EnBECsa, VL9HL330sa, HL330sa, VL9sa,
and NoDAsa are presented in Fig. 12. The RMSE and bias show the diurnal cycle, with lower
RMSE and bias values during the night and larger values during the afternoon, which is similar
to results in Fig. 7. However, the differences between experiments with data assimilation and
without it are more marked. The impact of the variation in the horizontal and vertical localiza-
tion radius is neutral to negative in most of the cycles and for both variables when compared to
85EnBECsa. The experiment VL9HL330sa shows the worst performance at cycles initialized
between 15:00 UTC and 21:00 UTC, when NoDAsa performs best.
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Figure 12: RMSE and bias for the 3 h forecast of 2 m temperature (a and c) and 2 m dew point temperature
(b and d) against synoptic station and METAR observations for experiments 85EnBECsa, VL9HL330sa,
HL330sa, VL9sa, and NoDAsa. The legend for each experiment is shown at the bottom of panel (c). The
RMSE averaged over all cycles is shown in panels (a) and (b) for each experiment.

3.4 The impact of supersaturation removal and PBL pseudo observations

The function to remove supersaturation in the background, available during the analysis process
in GSI, is activated in the experiment CLIPSATsa. Results from the difference in the specific
humidity (g kg−1) analyses between experiments with and without activating this option show
more positive and negative differences with a larger magnitude in the southwestern part of the
domain over the state of Amazonas and northwestern Para in Brazil, and also over Guyana
which corresponds with the area where precipitation is occurring according to the CMORPH
estimates (figure not shown). The 2, 4, and 6 h forecasts of 1 h accumulated precipitation from
the 15:00 UTC cycle on 5 July 2020 for experiments CLIPSATsa and 85EnBECsa are shown in
Fig. 13 along with the precipitation estimates from CMORPH at valid hours 17:00, 19:00, and
21:00 UTC, respectively. CLIPSATsa shows improvements when compared with 85EnBECsa,
especially over the ocean at all forecast lengths. However, over land, the improvements are
mainly at 4 and 6 h forecasts with slightly better coverage of the precipitation along the coast.

3.5 Quantitative Precipitation Forecast Verification

A further evaluation of the precipitation forecasts was performed in terms of the equitable threat
scores (ETS) and frequency bias (FBIAS) for the thresholds 0.01 inches h−1 and 0.25 inches h−1.
Figure 14 shows the ETS and FBIAS for 1 h accumulated precipitation greater than 0.01 inches h−1
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Figure 13: As in Fig. 9, but for experiments 85EnBECsa (d, e, and f) and CLIPSATsa (g, h, and i).

(Fig. 14a and c) and 0.25 inches h−1 (Fig. 14b and d) for experiments CLIPSATsa, PSEUDOsa,
VL9H330sa, 100EnBECsa, 85EnBECsa, 3DVarsa, and NoDAsa aggregated at each forecast
lead hour. Overall, the ETS and FBIAS results for both thresholds indicate that 3DVar performs
better than the other experiments, especially in the first 2 h. For the longer forecasts, a bet-
ter performance of the 1 h accumulated precipitation greater than 0.01 inches h−1 is achieved
in 85EnBECsa followed by PSEUDOsa, VL9H330sa, and CLIPSATsa through 9 h forecast.
In the later forecast hours, the impact from the data assimilation starts to decay, although the
experiment CLIPSATsa shows a slightly better performance during the 9 h to the 24 h fore-
cast. The experiment 100EnBECsa shows better performance than NoDAsa, but worse than
the other experiments with data assimilation. The FBIAS results for this threshold shows that
3DVar performs best, followed by the experiments 85EnBECsa, PSEUDOsa, VL9H330sa, and
CLIPSATsa, all of which show better results than 100EnBECsa and NoDAsa. The values of
the FBIAS indicate that all experiments underperform in the frequency with which observed
events were predicted. For 1 h accumulated precipitation greater than 0.25 inches h−1, the per-
formance of the system is overall low, with the ETS and FBIAS results from all experiments
concentrating at lower ranges and 3DVar showing the best results at shorter lead times. How-
ever, these results should be carefully interpreted since a grid-to-grid approach is being used for
the computation of the ETS and FBIAS, which may not be ideal for this case. A grid-to-grid
verification may benefit the experiment that overestimates precipitation (3DVar), given that the
estimated precipitation shows scattered areas of accumulated precipitation throughout the do-
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main, which is more difficult for the model to accurately predict. A more appropriate approach
for convective scales such as the neighborhood approach may be considered in future studies as
indicated in Schwartz and Sobash (2017).
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Figure 14: ETS (a and b) and FBIAS (c and d) for 1 h accumulated precipitation forecasts greater than
0.01 inches (a and c) and 0.25 inches (b and d) from experiments CLIPSATsa, PSEUDOsa, VL9H330sa,
100EnBECsa, 85EnBECsa, 3DVarsa, and NoDAsa for 24 hour forecasts.

4 Conclusions and future work

In this DTC visitor project, the data assimilation framework for the prototype RRFS is inves-
tigated through the simulation of weather systems often seen over tropical latitudes, such as
a typical Amazon coastal squall line case during the 2020 Amazon dry season. Sensitivities
to various configurations and algorithms available in GSI are analyzed in order to find the best
configuration to produce more realistic convection forecasts and provide guidance on convective
scale data assimilation over regions of the globe with low data density, as in the Amazon region.
The initial challenge for this study is the case selection, and a methodology based on multiple
past efforts is developed and applied. The Amazon coastal squall line case that initiated during
the afternoon of 5 July 2020 is selected and studied through the execution of various numerical
experiments. Overall, results suggest that RRFS can provide reasonably good guidance for the
tropical region. The main findings of the study are listed below:

a) RRFS is able to capture the main large scale patterns with a correct positioning of the
precipitating systems as analyzed using the CMORPH precipitation estimates;

b) A CCPP physics suite based on HRRR physical parameterizations shows a better repre-
sentation of the precipitation, while a GFS-based physics suite shows larger coverage and
intensity than the precipitation estimates;
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c) Despite the low coverage of available data for experiments with data assimilation, the data
assimilation system performs adequately over this region, with RRFS analyses closer to
the observations in all cycles;

d) Precipitation coverage along the coast and other parts of the domain are improved when
using data assimilation. Experiments 85EnBECsa and 100EnBECsa show a closer agree-
ment with the precipitation estimates of the domain at 4 and 6 h forecast, with 85EnBECsa
showing better results at all forecast lengths;

e) There is a notable diurnal cycle in the RMSE and bias values, with the experiment
NoDAsa outperforming the experiments with data assimilation during the afternoon hours.
Errors associated with the convection occurrence and sparser coverage of surface obser-
vations in the domain may have contributed to these results;

f) The experiment 3DVarsa shows larger RMSE and bias when comparing against obser-
vations of 2 m temperature and 2 m dew point temperature in all cycles, while the ex-
periment 85EnBECsa performs better than the others during the night and early morning
hours;

g) When increasing the localization radius in ensemble-based error covariance, analysis in-
crements show more flow-dependent characteristics, particularly when increasing the hor-
izontal localization radius from 110 km to 330 km which also allows for improvements
in the RMS of the OmA values and slightly better representation of the satellite-derived
precipitation estimates. Nevertheless, when comparing against surface observations, the
impact is neutral to negative;

h) When activating supersaturation removal in GSI for this case study, the results show pos-
itive impacts against 85EnBECsa with a slightly better representation of the precipitation
along the coast. However, the improvements are small and mainly concentrated at larger
forecast lengths;

i) The 1 h accumulated precipitation forecasts for different thresholds corroborates that
heavier precipitation (>0.25 inches (6.35 mm)) is more difficult to predict than light pre-
cipitation (>0.01 inches (0.254 mm)), which has also been found in many other studies
using different forecasting systems;

j) The 1 h accumulated precipitation forecast skill in terms of ETS and FBIAS using a
gridpoint-based verification likely is not appropriate for the precipitation verification of
this case study.

Despite all the options tested in this study, it is clear that there is still much to investigate regard-
ing the capabilities of RRFS over the tropics. Future studies may be focused on investigating
the use of GOES-16 GLM data as a proxy for reflectivity in the data assimilation system. This
approach would be particularly important for convective scale data assimilation over regions
that rely on satellite data, such as the Amazon.
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