

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Parallel version for the BRAMS with Runge-Kutta dynamical core

Luiz Flavio Rodrigues (*) Simone S. Tomita (*) Renata S. R. Ruiz (*) Jairo Paneta (#) Saulo R. Freitas (##) Haroldo F. Campos Velho (*)

(*) INPE: National Institute for Space Research – Brazil

(#) ITA: Aeronautics Technological Institute – Brazil

(##) NASA: National Aeronautics and Space Administration – USA

Conference of Computational Interdisciplinary Science

Presentation outline

- Numerical time integration
 - Finite difference approximation for derivatives
 - Explicit method
 - Implicit method
 - Semi-implicit method
 - Implicit-explict (IMEX) method
 - Higher order method
- BRAMS model
- Prediction under intense convection (CZSA)
- Final remarks

INPE

• Finite difference: advection/convection equation

$$egin{aligned} &rac{\partial u}{\partial t} + a rac{\partial u}{\partial x} = b rac{\partial^2 u}{\partial x^2} + f(x,t) \ &u(x,0) = u_0(x) \ &u(0,t) = u(L_x,t) = 0 \end{aligned}$$

 $U_i(t) \equiv u(x_i, t)$ $F_i(t) \equiv f(x_i, t)$ and $x_i = x_{i-1} + \Delta x$

INPE

Finite difference: advection/convection equation

$$\left(rac{\partial u}{\partial x}
ight)_i = rac{U_{i+1}(t) - U_{i-1}(t)}{2\Delta x} + O(\Delta x^2)$$

$$\left(\frac{\partial^2 u}{\partial x^2}\right)_i = \frac{U_{i+1}(t) - 2U_i(t) + U_{i-1}(t)}{\Delta x^2} + O(\Delta x^2)$$

 $\Delta x = L_x/N_x$ and $N_x = 4$

INPE

• Finite difference: advection/convection equation

$$\begin{split} \frac{dU_1(t)}{dt} + a \left[\frac{U_2(t) - U_0(t)}{2\Delta x} \right] &= b \left[\frac{U_2(t) - 2U_1(t) + U_0(t)}{\Delta x^2} \right] + F_1(t) \\ \frac{dU_2(t)}{dt} + a \left[\frac{U_3(t) - U_1(t)}{2\Delta x} \right] &= b \left[\frac{U_3(t) - 2U_2(t) + U_1(t)}{\Delta x^2} \right] + F_2(t) \\ \frac{dU_3(t)}{dt} + a \left[\frac{U_4(t) - U_2(t)}{2\Delta x} \right] &= b \left[\frac{U_4(t) - 2U_3(t) + U_2(t)}{\Delta x^2} \right] + F_3(t) \end{split}$$

INPE

• Finite difference: advection/convection matrix form

$$\frac{d\mathbf{U}(t)}{dt} + \mathbf{A}\mathbf{U} = \mathbf{B}\mathbf{U} + \mathbf{F}$$
$$\mathbf{U}(t) \equiv \begin{bmatrix} U_1(t) \\ U_2(t) \\ U_3(t) \end{bmatrix} \qquad \mathbf{A} = \frac{a}{2\Delta x} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$
$$\mathbf{F}(t) \equiv \begin{bmatrix} F_1(t) \\ F_2(t) \\ F_3(t) \end{bmatrix} \qquad \mathbf{B} = \frac{b}{\Delta x^2} \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$$

Time integration: explicit method first order

$$\frac{d\mathbf{U}(t_n)}{dt} = \frac{\mathbf{U}^{n+1} - \mathbf{U}^n}{\Delta t} + O(\Delta t)$$

Time integration: implicit method first order

$$\frac{d\mathbf{U}(t_{n+1})}{dt} = \frac{\mathbf{U}^{n+1} - \mathbf{U}^n}{\Delta t} + O(\Delta t)$$

Time integration: semi-implicit (Crank-Nicolson) method

$$\frac{d\mathbf{U}(t_{n+1/2})}{dt} = \frac{\mathbf{U}^{n+1} - \mathbf{U}^n}{\Delta t} + O(\Delta t^2)$$

Time integration: explicit (Leafrog) second order

$$\frac{d\mathbf{U}(t_n)}{dt} = \frac{\mathbf{U}^{n+1} - \mathbf{U}^{n-1}}{2\Delta t} + O(\Delta t^2)$$

Explicit Runge-Kutta 1st order

 $\mathbf{U}^{n+1} = \mathbf{U}^n - \Delta t \left[\mathbf{A} \mathbf{U}^n - \mathbf{B} \mathbf{U}^n - \mathbf{F}^n \right]$

Implicit Euler method

$$\left[\mathbf{I} + \Delta t \left(\mathbf{A} - \mathbf{B}\right)\right] \mathbf{U}^{n+1} = \mathbf{U}^n + \Delta t \mathbf{F}^{n+1}$$

INPE

Semi-implicit Crank-Nicolson method

$$\begin{aligned} \frac{d\mathbf{U}^{n+1/2}}{dt} &\approx \frac{\mathbf{U}^{n+1} - \mathbf{U}^n}{\Delta t} = -\mathbf{A}\mathbf{U}^{n+1/2} + \mathbf{B}\mathbf{U}^{n+1/2} + \mathbf{F}^{n+1/2} \\ \mathbf{U}^{n+1/2} &\approx \frac{1}{2} \left[\mathbf{U}^{n+1} + \mathbf{U}^n \right] \end{aligned}$$

 $\left[2\mathbf{I} + \Delta t \left(\mathbf{A} - \mathbf{B}\right)\right] \mathbf{U}^{n+1} = \left[2\mathbf{I} - \Delta t \left(\mathbf{A} - \mathbf{B}\right)\right] \mathbf{U}^n + 2\Delta t \mathbf{F}^{n+1/2}$

Runge-Kutta 2nd order

$$\begin{split} \frac{\mathbf{U}^{n+1} - \mathbf{U}^n}{\Delta t} &= -\mathbf{A}\mathbf{U}^{n+1/2} + \mathbf{B}\mathbf{U}^{n+1/2} + \mathbf{F}^{n+1/2} \\ \mathbf{U}^{n+1/2} &\approx \frac{1}{2} \left[\mathbf{U}^{n+1} + \mathbf{U}^n \right] \\ \mathbf{U}^{n+1}_* &= \mathbf{U}^n - \Delta t \left[\mathbf{A}\mathbf{U}^n - \mathbf{B}\mathbf{U}^n - \mathbf{F}^n \right] \\ \mathbf{U}^{n+1} &= \mathbf{U}^n - \frac{\Delta t}{2} \left[\mathbf{A} \left(\mathbf{U}^n + \mathbf{U}^{n+1}_* \right) - \mathbf{B} \left(\mathbf{U}^n + \mathbf{U}^{n+1}_* \right) - 2\mathbf{F}^{n+1/2} \right] \end{split}$$

Runge-Kutta 2nd order

INPE

$$\frac{\mathbf{U}^{n+1} - \mathbf{U}^n}{\Delta t} = \mathbf{G}(\mathbf{U}_{n+1/2}, t_{n+1/2})$$

 $\mathbf{U}^{n+1} = \mathbf{U}^n + (k_1 + k_2)/2 + O(\Delta t^2)$

 $k_1 = \Delta t \mathbf{G}(\mathbf{U}^n, t_n)$

$$k_2 = \Delta t \mathbf{G} (\mathbf{U}^n + k_1, t_n + \Delta t)$$

Runge-Kutta 3rd order

INPE

$$\mathbf{U}^{n+1} = \mathbf{U}^n + (k_1 + 4k_2 + k_3)/6 + O(\Delta t^3)$$
 $k_1 = \Delta t \mathbf{G}(\mathbf{U}^n, t_n)$

 $k_2 = \Delta t \mathbf{G} (\mathbf{U}^n + k_1/2, t_n + \Delta t/2)$

 $k_3 = \Delta t \mathbf{G} (\mathbf{U}^n - k_1 + 2k_2, t_n + \Delta t)$

Implicit-Explicit (IMEX) method

INPE

Equation: non-stiff and stiff components

$$\frac{d\mathbf{U}(t)}{dt} + \mathbf{AU} = \mathbf{BU} + \mathbf{F}$$

$$\frac{\mathbf{U}^{n+1} - \mathbf{U}^n}{\Delta t} = -\mathbf{A}\mathbf{U}^{n+1/2} + \mathbf{B}\mathbf{U}^{n+1/2} + \mathbf{F}^{n+1/2}$$

$$\frac{\mathbf{U}^{n+1} - \mathbf{U}^n}{\Delta t} = -\underbrace{\mathbf{A}\mathbf{U}^{n+1/2}}_{\text{Crank-Nicolson}} + \underbrace{\mathbf{B}\mathbf{U}^{n+1/2}}_{\text{Runge-Kutta 2nd}} + \mathbf{F}^{n+1/2}$$

- Implicit-Explicit (IMEX) method
- Equation: non-stiff and stiff components

IMEX SCHEMES FOR TIME INTEGRATION OF BURGERS' EQUATION

Antonio M. Zarzur Haroldo F. Campos Velho Stephan Stephany Saulo R. Freitas

- Why other method for time integration?
- 1. For enhancing the numerical precision
- 2. To explore a new stability region: larger Δt !
- 3. Larger $\Delta t \rightarrow$ for reducing the CUP-time to do a numerical prediction for finer spece resolution.

BRAMS: Brazilian developments to the RAMS

RAMS:

Regional Atmospheric Modeling System Developed by the Atmospheric Science Department of the Colorado State University (USA)

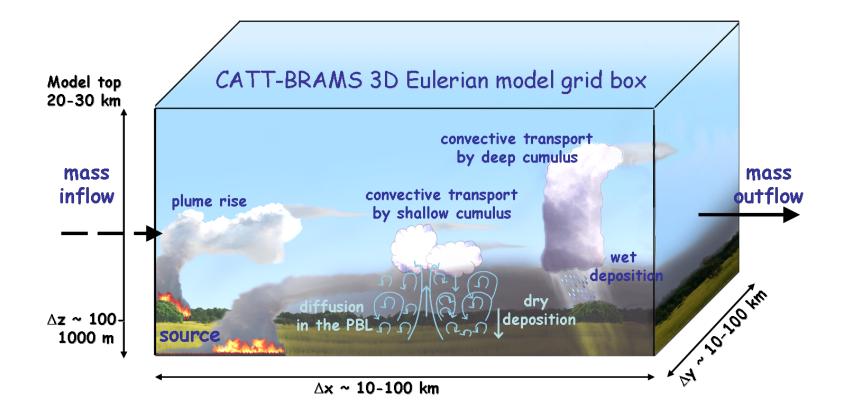
BRAMS is a meso-scale atmospheric simulator

BRAMS can represent different atmospheric processes on several space scales. The model employs a telescopic nested computer grid.

RAMS: Regional Atmospheric Model System

An atmospheric model able for simulating several types of the atmospheric flows, from large scale circulations up to microscale.

Starting its development at 70's:


Mesoscale model (Pielke,1974) Model of clouds (Trípoli e Cotton, 1982)

First version (1986) ⇒ Department of Atmospheric Sciences Colorado State University (CO, USA)

BRAMS: represented processes

BRAMS: Atmospheric simulation model

Eulerian transport model: CCATT-BRAMS atmospheric model

- in-line Eulerian transport model fully coupled to the atmospheric dynamics
- suitable for feedbacks studies
- tracer mixing ratio tendency equation

$$\frac{\partial \overline{s}}{\partial t} = \left(\frac{\partial \overline{s}}{\partial t}\right)_{adv} + \left(\frac{\partial \overline{s}}{\partial t}\right)_{PBL} + \left(\frac{\partial \overline{s}}{\partial t}\right)_{deep}_{deep} + \left(\frac{\partial \overline{s}}{\partial t}\right)_{shallow} + W_{PM 2.5} + R + \frac{\partial \overline{s}}{\partial t} + \mathcal{Q}_{plume}_{rise}$$

- adv grid-scale advection
- PBL turb sub-grid transport in the PBL
- deep conv sub-grid transport associated to the deep convection including downdraft at cloud scale
- shallow conv sub-grid transport associated to the shallow convection
- W convective wet removal
- R sink term associated with dry deposition or chemical transformation
- Q source emission with plume rise sub-grid transport.

From: S. R. Freitas, CPTEC/INPE

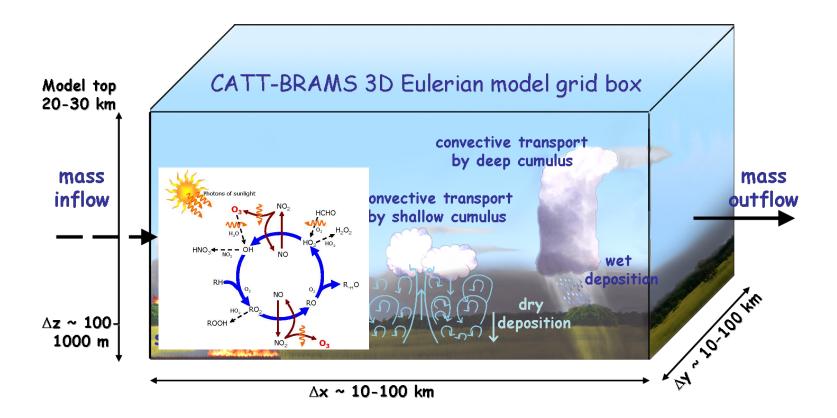
Eulerian transport model: CCATT-BRAMS atmospheric model

- in-line Eulerian transport model fully coupled to the atmospheric dynamics
- suitable for feedbacks studies

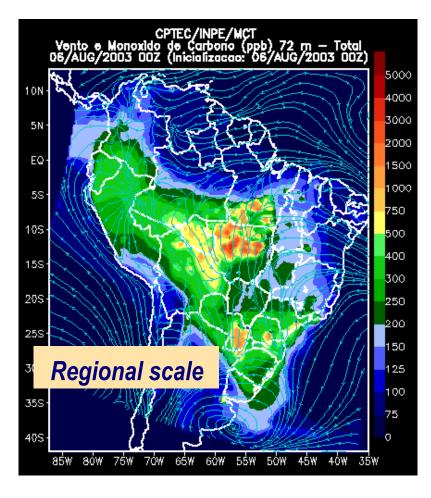
INPE

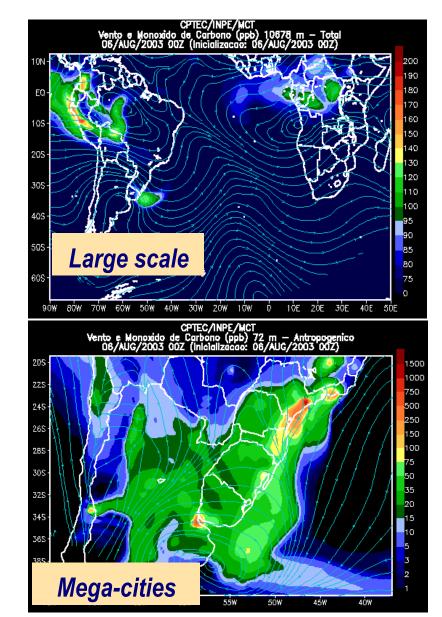
tracer mixing ratio tendency equation

$$\frac{\partial \overline{s}}{\partial t} = \left(\frac{\partial \overline{s}}{\partial t}\right)_{adv} + \left(\frac{\partial \overline{s}}{\partial t}\right)_{PBL} + \left(\frac{\partial \overline{s}}{\partial t}\right)_{deep} + \left(\frac{\partial \overline{s}}{\partial t}\right)_{shallow} + W_{PM2.5} + R + \frac{Q_{PM2.5}}{Q_{PM2.5}} +$$


- adv grid-scale advection
- PBL turb sub-grid transport in the PBL
- deep conv sub-grid transport associated to the deep convection including downdraft at cloud scale
- shallow conv sub-grid transport associated to the shallow convection
- W convective wet removal
- R sink term associated with dry deposition or chemical transformation
- Q source emission with plume rise sub-grid transport.
- chem. reactions
- 4dda large-scale data assimilation via Newtonian relaxation (nudging).

From: S. R. Freitas, CPTEC/INPE


BRAMS: represented processes


BRAMS: Atmospheric simulation model Chemical process

BRAMS environmental prediction

Pollutant emission by forest fires and urban-industries

BRAMS in Hybrid computers

Hybrid computing: CPU multi-core + GP-GPU

BRAMS: Atmospheric simulation model Dynamical core: codified on CPU Turbulence models: codified on GPU

- Smagorinsky (1963)
- o Mellor-Yamada (1982)
- Taylor based approach (1998)

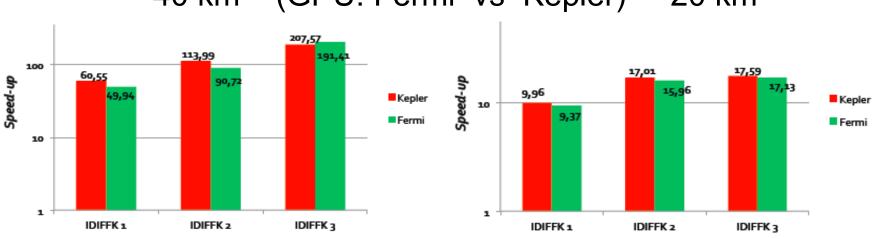
BRAMS in Hybrid computers

Hybrid computing: CPU multi-core + GP-GPU

Smagorinsky on GP-GPU

- o CUDA (Nvidia) implementation
- OpenCL implementation

OpenCL parcial code CUDA parcial code (GPU-1) CUDA parcial code (GPU-2) time time (ms) Time (ms) (ms) clCreateCommandQueue 50.924+0. 0.043 cudaMalloc 52.397 + cudaMalloc + cudaMemcpyAsync (CPU to cudaMemcpyAsync (CPU to 0.353 308 GPU) GPU) clCreateBuffer 0.012 clCreateProgramWithoutSource 0.337 cuda kernel mxdefm <<<...>> 0.019 cuda kernel mxdefm <<<...>> 0.016 >(,,,) >(,,,) clSetKernelArg 0.008 clEnqueueNDRangeKernel 0.045 cudaMemcpy (GPU to CPU) 0.319 cudaMemcpy (GPU to CPU) 0.571 0.174 0.001 clEnqueueReadBuffer 0.380 cudafree cudafree clReleaseMemObject 0.267 Total 1.263 Total 53.003 Total 51,820



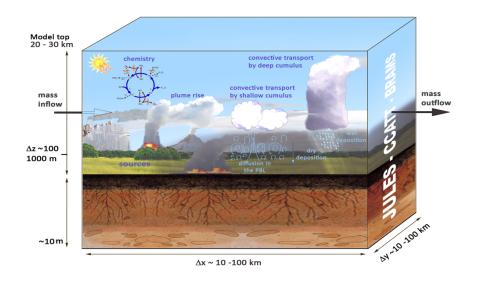
BRAMS in Hybrid computers

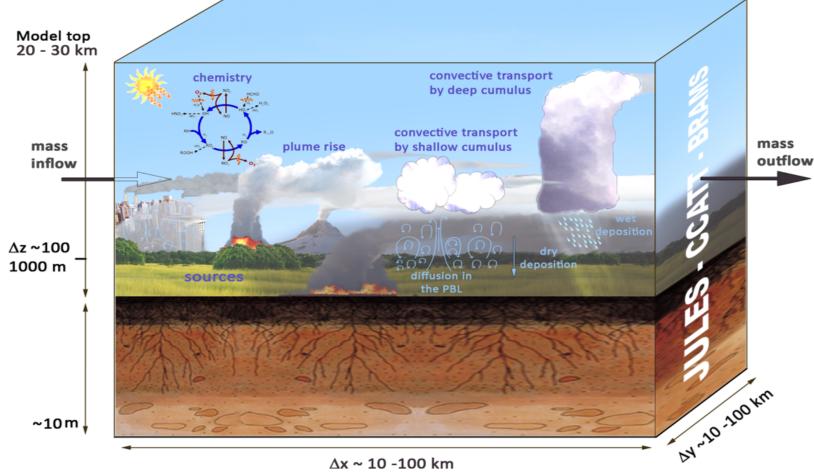
Hybrid computing: CPU multi-core + GP-GPU Smagorinsky on GP-GPU

- o CUDA (Nvidia) implementation
- OpenCL implementation

40 km (GPU: Fermi vs Kepler) 20 km

BRAMS – research in progress ...


Adv. Geosci., 35, 123–136, 2013 www.adv-geosci.net/35/123/2013/ doi:10.5194/adgeo-35-123-2013 © Author(s) 2013. CC Attribution 3.0 License.



Using the Firefly optimization method to weight an ensemble of rainfall forecasts from the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS)

A. F. dos Santos¹, S. R. Freitas¹, J. G. Z. de Mattos¹, H. F. de Campos Velho², M. A. Gan¹, E. F. P. da Luz², and G. A. Grell³

BRAMS 5.2 (new version) Air quality and weather prediction

Δx ~ 10 -100 km

BRAMS – New version 5.2

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-130, 2016 Manuscript under review for journal Geosci. Model Dev. Published: 7 June 2016 (c) Author(s) 2016. CC-BY 3.0 License.

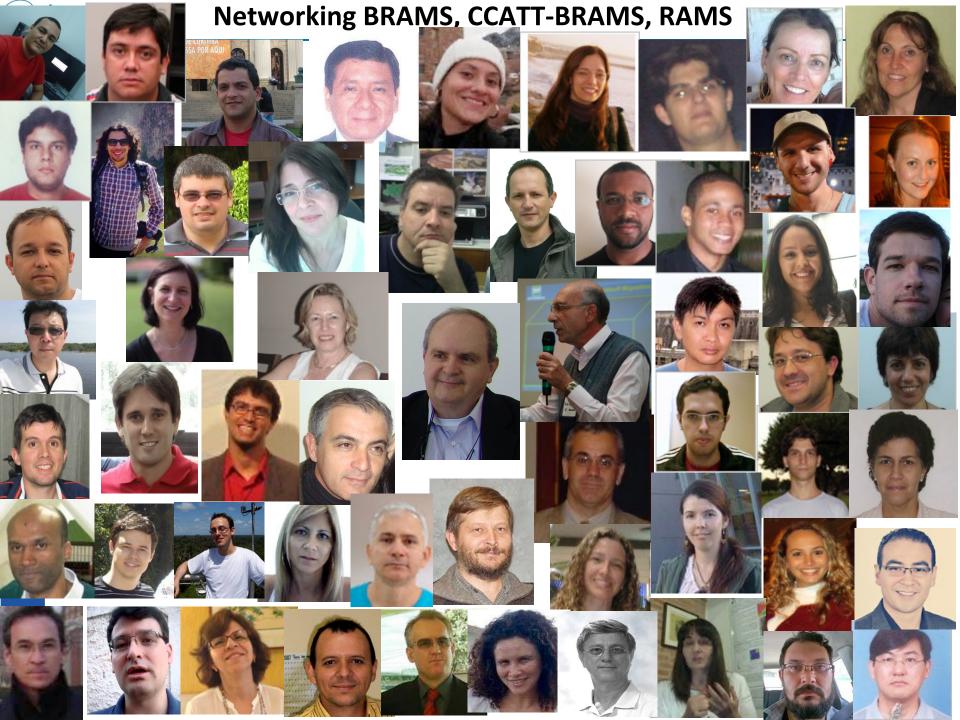
Model top

mass

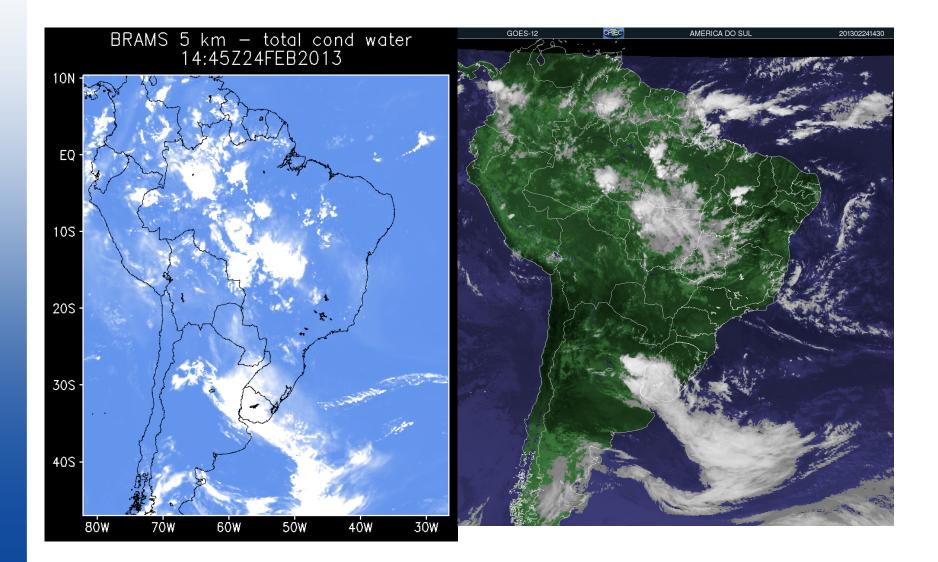
inflow

1000 m

20 - 30 km


The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas

Saulo R. Freitas^{1,a}, Jairo Panetta², Karla M. Longo^{1,a}, Luiz F. Rodrigues¹, Demerval S. Moreira^{3,4}, Nilton E. Rosário⁵, Pedro L. Silva Dias⁶, Maria A. F. Silva Dias⁶, Enio P. Souza⁷, Edmilson D. Freitas⁶, Marcos Longo⁸, Ariane Frassoni¹, Alvaro L. Fazenda⁹, Cláudio M. Santos e Silva¹⁰, Cláudio A. B. Pavani¹, Denis Eiras¹, Daniela A. França¹, Daniel Massaru¹, Fernanda B. Silva¹, Fernando Cavalcante¹, Gabriel Pereira¹¹, Gláuber Camponogara⁵, Gonzalo A. Ferrada¹, Haroldo F. Campos Velho¹², Isilda Menezes^{13,14}, Julliana L. Freire¹, Marcelo F. Alonso¹⁵, Madeleine S. Gácita¹, Maurício Zarzur¹², Rafael M. Fonseca¹, Rafael S. Lima¹, Ricardo A. Siqueira¹, Rodrigo Braz¹, Simone Tomita¹, Valter Oliveira¹, Leila D. Martins¹⁶



Δx ~ 10 -100 km

BRAMS 5.2 for weather prediction

BRAMS 5.2 for weather prediction

B-RAMS is a free software

http://brams.cptec.inpe.br

Ministério da Ciência e	Tecnologia	
		0

E-mail:	
Pwd:	

»Forgot your password? »New Register here.

⊨ Home

+ News

+ Download

***** Screenshots

Projects

» Press Release

» Documentation

» Papers, Thesis & Presentations

Skill against Observations

+ Bugzilla

+ Users RAMSEN

- ⊨ Links
- Mailing list
 - Google

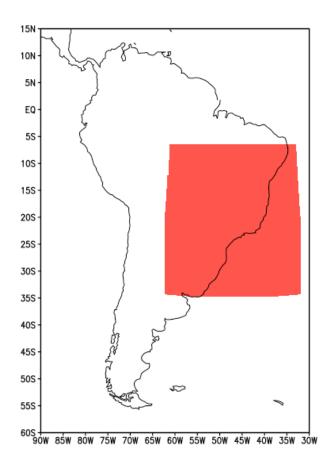
Model Description

Brazilian Regional Atmospheric Modeling System (BRAMS)

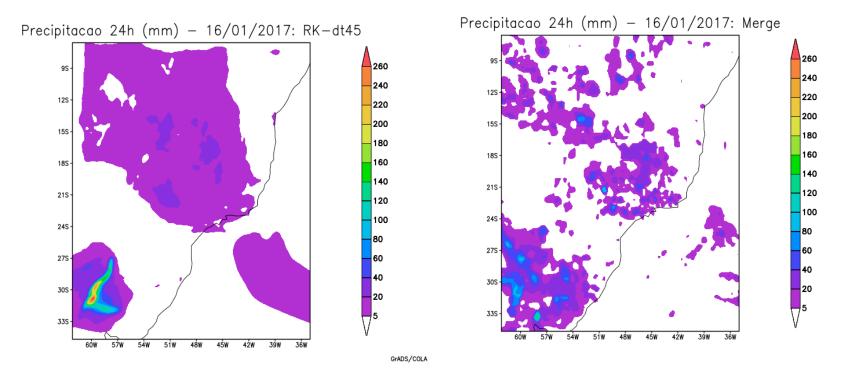
BRAMS (Brazilian Regional Atmospheric Modeling System) is a j ATMET, IME/USP, IAG/USP and CPTEC/INPE, funded by FI Funding Agency), aimed to produce a new version of RAMS I tropics. The main objective is to provide a single model to Bra Weather Centers. The BRAMS/RAMS model is a multipurpo prediction model designed to simulate atmospheric circulation scale from hemispheric scales down to large eddy simulations planetary boundary layer.

BRAMS Version 3.2 is RAMS Version 5.04 plus:

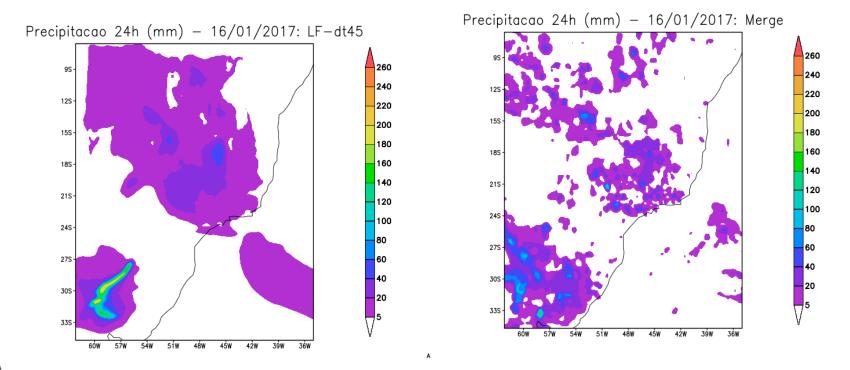
 Shallow Cumulus and New Deep Convection (mass flux several closures, based on Grell et al., 2002)


BRAMS 5.2 with 3rd Runge-Kutta

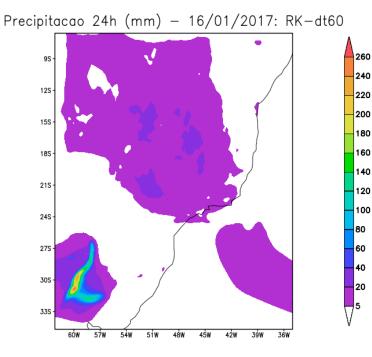
- Testing with 48 h of simulation
- Horizontal resolution: $\Delta x = \Delta y = 20 \text{ km}$
- Weather consition: rain-fall under CZSA.
- Initial and boundary conditions: from CPTEC-INPE AGCM: T126L28 T126: truncation at wave number 216 L28: vertical levels considered

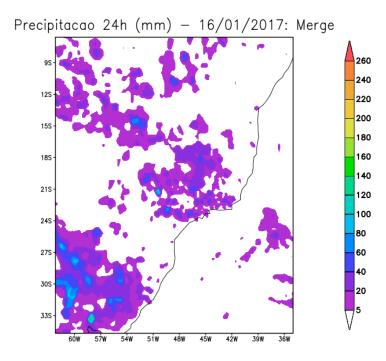

BRAMS 5.2 with 3rd Runge-Kutta

Simulation domain


BRAMS 5.2 with 3rd Runge-Kutta

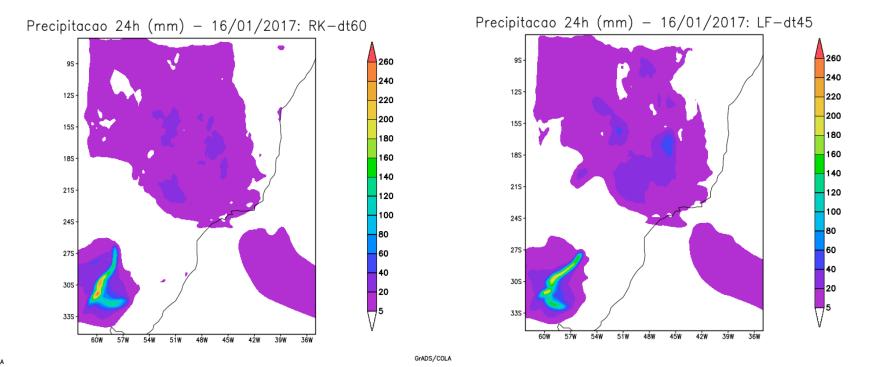
• Precipitation fields: RK3 ($\Delta t = 45 \text{ sec}$)


GrADS/COLA


• Precipitation fields: LF ($\Delta t = 45 \text{ sec}$)

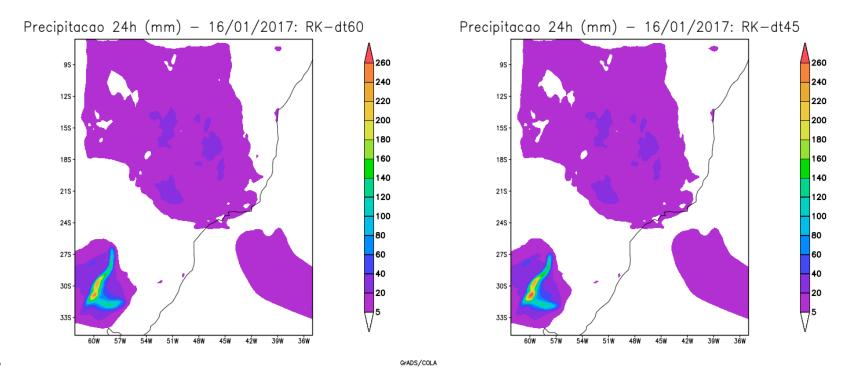
GrADS/COLA

• Precipitation fields: RK3 ($\Delta t = 60 \text{ sec}$)


GrADS/COLA

INPE

38


OLA

RK3 ($\Delta y = 60 \text{ sec}$) vs. LF ($\Delta t = 45 \text{ sec}$)

GrADS/COLA

RK3 ($\Delta y = 60 \text{ sec}$) vs. RK3 ($\Delta t = 45 \text{ sec}$)

GrADS/COLA

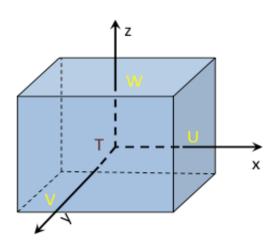
INPE

40

Simulations comparisons: CZSA

- Rain-fall simulation under CZSA with BRAMS 5.2
- Runge-Kutta 3rd order was effective, and the stability condition was 1/3 larger then Leapfrog.

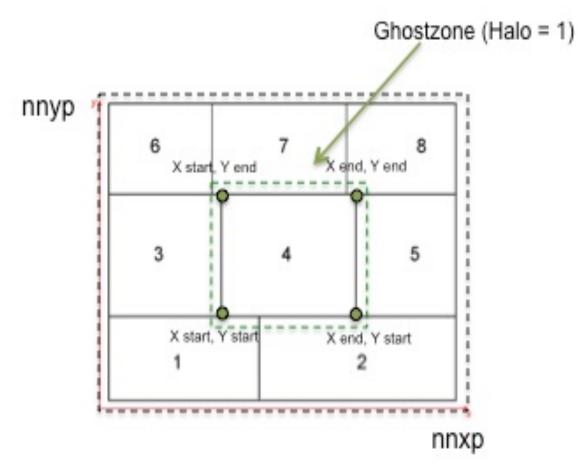
		ZCAS	
	RK3	RK3	LF
	(45s)	(60s)	(45s)
RMSE	14.494	14.362	15.263
VIES	1.755	1.808	1.958


Other simulations

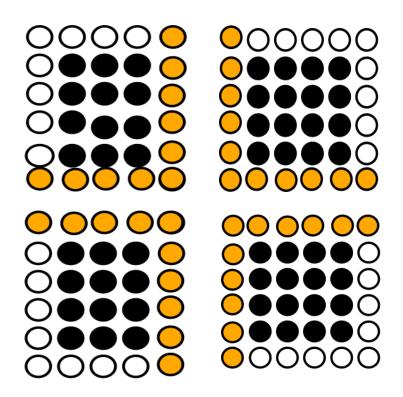
		El Niño			ZCAS		ZCIT			
	RK3	RK3	LF	RK3	RK3	LF	RK3	RK 3	LF	
	(45s)	(60s)	(45s)	(45s)	(60s)	(45s)	(45s)	(60s)	(45s)	
RMSE	19.815	19.908	19.946	14.494	14.362	15.263	12.334	12.343	13.366	
VIES	-0.095	0.017	-0.392	1.755	1.808	1.958	0.583	0.610	1.340	

Arakawa grid-C

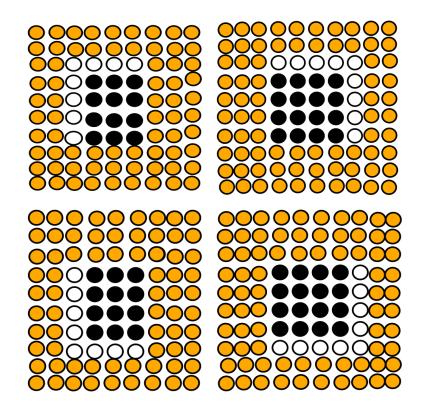
INPE


Velocity components and Temperatue

V ₀		V ₂₀		Vaji		V.,		V _a		V _U		V.,		V.	
т	U _Q	Т,,	υ,,	T _{ap}	U _{ap}	т.,	υ,	T _{age}	U _{se}	T _O	U _Q	T ₀	U.g.	T ₁₀	U.,
Va		Vsji		Vija		Vig		VS,0		Viji		V.g.		Ve	
T _O	U ₀	Т,,	ч,	$T_{\rm ap}$	υ,	T_{sp}	υ,	$T_{\lambda,0}$	υ,	T_{ij}	U	$\mathbb{T}_{\mathcal{T}}$	U,	T _O	U _Q
ve		$\vee_{2/}$		$\vee_{\mathbf{x}'}$		$V_{\mathbf{v}'}$		$\vee_{\mathbf{x}'}$		$V_{\mathbf{k}^{\prime}}$		V.,		V.	
т _е	U _V	$T_{\gamma \prime}$. Ч <u>и</u>	$\mathbb{T}_{3,'}$	u,-	$T_{\rm V}$. U.,	$T_{\mathbf{k}^{\prime}}$	υ,	$T_{\mathbf{k}^{\prime}}$	U.	Τ.,	U,	$T_{\mathbf{k}^{\prime}}$	U.
Vu		$\vee_{2,0}$		$\vee_{a\mu}$		$\mathbb{V}_{\mathbf{y}}$		$\vee_{\mathbf{Q}^{0}}$		$\nabla_{\boldsymbol{\varphi}}$		V.,		Ve	
то	Y ₀	Т _{2,0}	ч,	$T_{2,0}$	u,	T_{22}	υ,	$T_{\lambda,0}$	υ,	$T_{\mathbf{Q}}$	U	$\mathbb{T}_{\mathcal{T}}$	u.	T _O	U _Q
Vu		V ₂₂		Vas		V.,		V _{4,2}		V _{ip}		V.,		Ves	
ты	U _O	Т ₂₂	Ч.>	$\mathbb{T}_{2,3}$	Up.	Τ.,,	U ₂	$T_{\mathbf{x},\mathbf{x}}$	υ,	$T_{\rm IJA}$	U.	т.,	U.	Tes	U _{to}
ve		V ₂ ,		$\vee_{a,*}$		V.,		V _A .		$V_{ij},$		V.		V.	
те	U _e	Т _{2,9}	ч,	$T_{\mathbf{X}^{0}}$	ч.	T_{ij}	.,	$T_{\lambda_i^{\alpha}}$	υ.	$T_{Q^{\ast}}$	U	$\mathbb{T}_{\mathcal{T}}$	U.	T _e	U.
Va		٧5,2		$\vee_{a,a}$		16,2		V5,a		Vip		V.,		Viça	
тџ	U _Q	Т,,,	ч,	$\mathbb{T}_{3,3}$	υ,	Т.,	υ,	$T_{3,3}$	υ,	T _{1,2}	U.,	Т.,	U,	Тер	U _{to}
vo		V,,,		V _{ap}		V.,		V ₄₂		V ₁₂		V.,		V _{e2}	
то	40	Т,,	ч,	Τ.,,	u,	Т.,	υ,	$T_{\mathbf{x},\mathbf{t}}$	υ,	Τ ₁₂	U,	τ.,	υ,	Τ.,,	U _{e2}
v _u	-	V ₂₁		V _a ,		V.		V _{A1}		V _Q		V _Q		V _Q ,	
то	Ug	T _{2,1}	Uga	T _{R1}	Uga	T _M	U.,	Tat	U _{X1}	T _Q	U _O	\mathbf{T}_{0}	U.j.	T _O	U _Q


INPE

Strategy: indenpendent domain decomposition

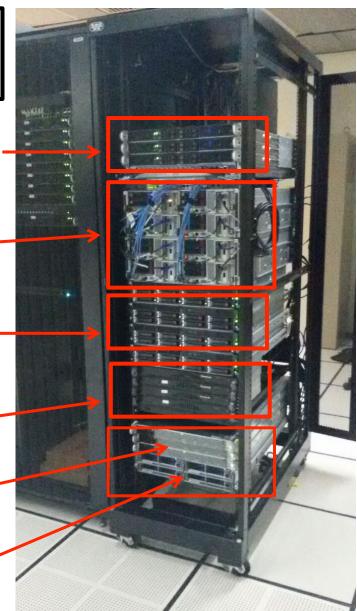


Strategy: old fashion - Leapfrog

Strategy: new approach – Runge-Kutta 3rd order

Cluster Lacibrido

3 Nodes FPGA (2014)


8 Nodes 2013 (1, 2, ..., 7)

4 Nodes HP (storage)

5 Nodes ARM (2014)

3 Nodes FPGA⁻ (2015)

4 Nodes ARM (2015)

Nodes 1,2, ..., 7 (2013): 2 proc. Intel 10-cores 2 GPU K20 FPGA Virtex-6

Nodes FPGA (2014): 2 proc. Intel 12-cores GPU K20 Xeon Phi 60-cores FPGA Virtex-7

Nodes FPGA (2015): 2 proc. Intel 12-cores 1 GPU K80 Xeon Phi (Knights Corner) 60-core FPGA Virtex-7

Nodes ARM (2014): 5 AppliedMicro 8-core (Calxeda: we can't buy)

Nodes ARM (2015): 8 Cavium ThunderX 48-cores

Parallel implementation – efficiency

BRAMS RK3: efficienty (Hybrid cluster – only CPU multi-core)

Table 1: BRAMS parallel execution evaluation to the RK3.

Cores	CPU-time (sec)	efficiency
10	27080	
20	15661	$72{,}91\%$
40	7257	$115{,}81\%$
80	6895	$5{,}25\%$
120	4936	$79{,}38\%$
160	4150	$56{,}82\%$
200	3746	$43{,}14\%$
240	3330	$62,\!46\%$
280	3166	$31{,}08\%$

Final Remarks

- 1. Leapfrog (LF) and Runge-Kutta 3rd (RK3) order produced similar results to simulate the SACZ event. RK3 remain stable for a greater dt than LF.
- 2. Other simulations with rainfall events (El NiÑo and ITCZ) obtained similar results.
- 3. Parallel version to the RK3 was effective. The code needed to be modified.
- 4. The performance for 40-cores (superlinear) and 80cores (very poor) deserve to be more investigation.

Thank you!

Thank you!

