
JULES Technical Documentation

Martin Best

Met Office, Joint Centre for Hydro-Meteorological Research,

Maclean Building, Crowmarsh Gifford, Wallingford, Oxon. Ox10 8BB, U.K.

This is a combination of the following two documents:
(with irrelevant parts removed)

MOSES 2.2 technical documantation

(Hadley Centre Technical Note 30)
with an update to the surface energy balance for the restructured code

TRIFFID technical documentation
(Hadley Centre Technical Note 24)

September 29, 2009

1



MOSES 2.2 Technical Documentation

Richard Essery, Martin Best and Peter Cox

Hadley Centre, Met Office, London Road, Bracknell, Berks R12 2SY, UK

Augist 20, 2001

Abstract

MOSES 2.2 is a new version of the Met Office Surface Exchange Scheme including a tiled

representation of heterogeneous surfaces. The implementation of MOSES 2.2 in the radiation,

boundary layer and hydrology sections of the Unified Model is described. Instructions are

provided for running MOSES 2.2 as a modification to UM version 4.5, as an option in version

5.2 or in an off-line version.

1 Introduction

MOSES 2.2 introduces a tiled model of subgrid heterogeneity in the MOSES land-surface scheme.
Whereas MOSES I (?) used effective parameters to calculate a single surface energy balance
for each gridbox, MOSES 2.2 treats subgrid land-cover heterogeneity explicitly. Separate surface
temperatures, shortwave and longwave radiative fluxes, sensible and latent heat fluxes, ground
heat fluxes, canopy moisture contents, snow masses and snow melt rates are computed for each
surface type in a gridbox. Nine surface types are recognized : broadleaf trees, needleleaf trees, C3

(temperate) grass, C4 (tropical) grass, shrubs, urban, inland water, bare soil and ice. Except for
those classified as land-ice, a land gridbox can be made up from any mixture of the first 8 surface
types. Fractions νj (j = 1, . . . , 9) of surface types within each land-surface gridbox are read from an
ancillary file or modelled by TRIFFID (?). Air temperature, humidity and windspeed on atmospheric
model levels above the surface and soil temperatures and moisture contents below the surface are
treated as homogeneous across a gridbox.
Other new features in MOSES 2.2 include :

• Vegetation-dependent surface parameters are calculated on-line from vegetation height and
leaf area index rather than read from ancillaries.

• New AVHRR vegetation maps are available.

• An optional spectral albedo scheme calculates separate diffuse and direct beam albedos in
visible and near-infrared bands for vegetation tiles, with snow aging parametrized using a
prognostic grain size.

• The Penman-Monteith elimination of the surface temperature from the surface energy balance
has been extended to include upward longwave radiation, and a diagnostic has been added to
output the adjusted TOA outgoing longwave radiation between radiation timesteps.
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• Canopy heat capacity and fractional coverage calculations in the optional canopy model have
been reformulated.

• An implicit numerical scheme for updating temperatures and moisture contents of soil layers
has been introduced.

• An exponential root-depth distribution has been introduced and the conductance for evapo-
ration from bare soil and soil beneath sparse vegetation has been reformulated.

• The code has been restructured as suggested by ? to give a clearer separation between surface
and boundary-layer routines. This also bring increments due to snow melt or limited moisture
availability within the implicit calculation of surface heat and moisture fluxes.

The performance of MOSES 2.2 is discussed in climate simulations by ? and in mesoscale forecasts
by ?.

2 Radiation

Rather than the net radiation used in the MOSES I surface energy budget, MOSES 2.2 requires
net shortwave radiation on tiles and downward longwave radiation to be calculated by the radiation
scheme. Surface albedos are specified either as single values for all bands with diagnosed snow albe-
dos or, if selected by L SNOW ALBEDO=.TRUE. in namelist NLSTCATM, spectral values with prognostic
snow albedos.

2.1 All-band albedos

Snow-free and cold deep snow albedos for unvegetated tiles are given in Table 1. Bare soil albedos
vary geographically with soil colour, and are read from an ancillary file. For vegetation with leaf area
index Λ, snow-free and cold deep snow albedos are

αo = (1 − fr)αsoil + frα
∞
o , (1)

and
αcds = (1 − fr)α

o
s + frα

∞
s , (2)

where the radiative fraction, fr, is
fr = 1 − e−Λ/2 (3)

and αsoil is the albedo for snow-free soil underlying the vegetation. Values for the vegetation type
dependent parameters α∞

o , α∞
s and αo

s are given in Table 2.
Snow aging is represented by reducing the snow albedo when surface temperature T∗ exceeds -2◦C
according to

αs =
{

αcds T∗ < Tm − 2
αcds + 0.3(αo − αcds)(T∗ − Tm + 2) Tm − 2 < T∗ < Tm

, (4)

where Tm is the melting point. For a tile with snow mass S (kg m−2), the albedo is a weighted
average

α = α0 + (αs − α0)(1 − e−0.2S). (5)
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αo αcds

Urban 0.18 0.4
Inland water 0.06 0.8
Soil 0.11-0.35∗ 0.8
Ice 0.75 0.8

Table 1. Snow-free and cold deep snow albedos for unvegetated surface types from NVEGPARM.cdk.
∗ Snow-free soil albedos depend on soil colour.

α∞
o α∞

s αo
s

Broadleaf trees 0.1 0.15 0.3
Needleleaf trees 0.1 0.15 0.3
C3 grass 0.2 0.6 0.8
C4 grass 0.2 0.6 0.8
Shrubs 0.2 0.4 0.8

Table 2. Albedo parameters for vegetation types from PFTPARM.cdk

2.2 Spectral albedos

The ? two-stream canopy radiation model is used for vegetation albedos in the optional spectral
albedo scheme. Separate direct-beam and diffuse albedos in visible and near-infrared wave bands
are calculated for each vegetation type as

αdir =
h1

σ
+ h2 + h3 (6)

and
αdif = h7 + h8 (7)

where
h1 = −dp4 − cf, (8)

h2 =
1

D1

[(

d− p3h1

σ

)

(u1 − h)
1

S1
− p2S2

(

d− c− h1

σ
(u1 +K)

)]

, (9)

h3 = − 1

D1

[(

d− p3h1

σ

)

(u1 + h)S1 − p1S2

(

d− c− h1

σ
(u1 +K)

)]

, (10)

h7 =
c

D1S1

(u1 − h) (11)

and

h8 = −cS1

D1
(u1 + h) (12)

with

β0 =
1 +K

ωK
as,

c =
1

3
(α+ ω),

β =
c

ω
,

b = 1 − (1 − β)ω, d = ωKβ0, f = ωK(1 − β0),

h = (b2 − c2)1/2, σ = K2 + c2 − b2,
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u1 = b− c

αsoil
,

S1 = e−hΛ, S2 = e−KΛ,

p1 = b + h, p2 = b− h, p3 = b +K, p4 = b−K

and
D1 =

p1

S1
(u1 − h) − p2S1(u1 + h).

Assuming a spherical leaf-angle distribution, the single scattering albedo and the optical depth per
unit leaf area are

as =
ω

2

[

1 − µ ln

(

µ+ 1

µ

)]

(13)

and

K =
1

2µ
(14)

for zenith angle cosine µ. Parameter values for leaf reflection coefficient α and leaf scattering
coefficient ω, which depend on vegetation type and wave band, are given in Table 3.

αvis αnir ωvis ωnir

Broadleaf trees 0.1 0.45 0.15 0.7
Needleleaf trees 0.07 0.35 0.15 0.45
C3 grass 0.1 0.58 0.15 0.83
C4 grass 0.1 0.58 0.17 0.83
Shrubs 0.1 0.58 0.15 0.83

Table 3. Spectral albedo parameters from TRIF.cdk.

Snow albedos are calculated using a simplification of the ? parametrization of the ? spectral snow
albedo model. The aging of snow is characterized by introducing a prognostic grain size, r(t), set
to r0 = 50 µm for fresh snow and limited to a maximum value of 2000 µm. The change in r(t)
over a timestep ∆t is given by

r(t+ ∆t) =
[

r(t)2 +
Gr

π
∆t
]1/2

− [r(t) − r0]
Sf∆t

do
, (15)

where Sf is the snowfall rate during the timestep and do, the mass of fresh snow required to refresh
the albedo, is set to 2.5 kg m−2. The empirical grain area growth rate is

Gr =











0.6 µm2 s−1 T∗ = Tm (melting snow)
0.06 µm2 s−1 T∗ < Tm, r <150 µm (cold fresh snow)
A exp(−E/RT∗) T∗ < Tm, r >150 µm (cold aged snow)

(16)

where A = 0.23× 106 µm2 s−1, E = 37000 J mol−1 and R = 8.13451 J K−1 mol−1. Snow albedos
are calculated as

αvis = 0.98 − 0.002(r1/2 − r
1/2
0 ) (17)

and

αnir = 0.7 − 0.09 ln
(

r

r0

)

. (18)

The zenith angle dependence is represented by using an effective grain size,

re = [1 + 0.77(µ− 0.65)]2r, (19)
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in place of r in calculations of direct-beam albedos.
For a tile with snow-free albedo α0, snowdepth d and roughness length z0, the albedo in each band
is

α = fsnowαsnow + (1 − fsnow)αo (20)

where

fsnow =
d

d+ 10z0
. (21)

2.3 Radiation diagnostics

For a gridbox with tile fractions νj, the gridbox mean albedo

αi =
∑

j

νjαij (22)

for band i and the effective radiative surface temperature

T∗R =





∑

j

νjT
4
∗j





1/4

(23)

are used in calculating downward shortwave and longwave radiation fluxes LW↓ and SW↓i. Surface
energy flux calculations require the net all-band shortwave radiation on each tile

SWNj =
∑

i

(1 − αij)SW↓i (24)

and
∆OLR = OLR− σT 4

∗R, (25)

which is used in diagnosing the adjustment in TOA outgoing longwave radiation OLR due to changes
in surface temperature between radiation calls. SWNj, LW↓ and ∆OLR are stored in the RADINCS

array for use on timesteps between radiation calls.

3 Surface fluxes

3.1 Surface roughness and exchange coefficients

Momentum roughness length zo is set to h/20 for trees of height h and h/10 for other vegetation
types. Roughness lengths for unvegetated surface types are given in Table 4. The roughness length
of a tile with snow mass S is reduced to max[zo − 4 × 10−4S, 5 × 10−4].
A surface exchange coefficient for sensible and latent heat fluxes between the surface and the lowest
atmospheric level at height z1 over each tile is calculated as CH = fhCHn, where

CHn = k2
[

ln
(

z1 + zo

zo

)

ln
(

z1 + zo

zoh

)]−1

(26)

is the neutral exchange coefficient and

fh =











(1 + 10RiB/Pr)−1 RiB ≥ 0 (stable)

1 − 10RiB(1 + 10CHn

√
−RiB/fz)

−1 RiB < 0 (unstable)
(27)

5



with scalar roughness length zoh = zo/10,

fz =
1

4

(

zo

z1 + zo

)1/2

(28)

and Prandtl number

Pr = ln
(

z1 + zo

zo

) [

ln
(

z1 + zo

zoh

)]−1

. (29)

The bulk Richardson number is

RiB =
gz1
U2

1

{

1

T1

[

T1 − T∗ +
g

cp
(z1 + zom − zoh)

]

+ ψ
q1 − qsat(T∗, p∗)

q1 + ε/(1 − ε)

}

. (30)

for level-1 temperature T1, specific humidity q1 and windspeed U1. qsat(T∗, p∗) is the saturation
humidity at the surface temperature and pressure, and the surface resistance factor ψ is defined
in 3.3. Since ψ depends on CH , routine SF RESIST is first called to calculate ψ assuming neutral
conditions, this is passed to routines SF RIB and FCDCH for use in calculating RiB and CH , and
SF RESIST is then called again to calculate a revised value for ψ.
The above discussion assumes no level-1 cloud and does not include orographic roughness; see
Unified Model Documentation Paper 24 (?) for extensions. The alternative formulation of the
stability functions used in the new boundary layer scheme is described by Smith and Williams
(/home/hc0100/hadaw/public html/docs/surf exch.ps).

zo (m)
Urban 1.5
Water 3×10−4

Soil 3×10−4

Ice 1×10−4

Table 4. Roughness lengths for unvegetated surface types from NVEGPARM.cdk.

3.2 Canopy heat capacity

A vegetation canopy model, which introduces a canopy heat capacity and radiative coupling between
the canopy and underlying ground, can be selected by editing MOSES OPT.cdk to set CAN MODEL=3.
TRIFFID (?) gives the masses of carbon in leaves and stems per unit area of canopy as σlΛb and

awlΛ
5/3
b , where the balanced-growth leaf area index for vegetation of height h is

Λb =

(

awsηslh

awl

)3/2

(31)

with parameters given in Table 5. An areal canopy heat capacity, Cc, is calculated assuming specific
heat capacities (in kJ K−1 per kg of carbon) of 570 for leaves and 110 for wood, based on values
given by ? and ?. For non-vegetated tiles, and vegetated tiles if the canopy model is not selected,
Cc is set to zero.

awl aws ηsl σl

Broadleaf trees 0.65 10 0.01 0.0375
Needleleaf trees 0.65 10 0.01 0.1
C3 grass 0.005 1 0.01 0.025
C4 grass 0.005 1 0.01 0.05
Shrubs 0.1 10 0.01 0.05

Table 5. Vegetation parameters from TRIF.cdk.
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3.3 Evaporation

Surface evaporation is drawn from soil, canopy and snow moisture stores. Evaporation from saturated
parts of the surface (lakes, wet vegetation canopies and snow) is calculated at the potential rate
(i.e. subject to an aerodynamic resistance only).
Evaporation from transpiring vegetation is controlled by a canopy conductance, gc, calculated by a
photosynthesis model depending on temperature, humidity deficit, incident radiation, soil moisture
availability and vegetation type (?, ?). The ability of vegetation to access moisture at each level
in the soil is determined by root density, assumed to follow an exponential distribution with depth.
The fraction of roots in soil layer k extending from depth zk−1 to zk is

rk =
e−2zk−1/dr − e−2zk/dr

1 − e−2zt/dr

, (32)

where dr is the rootdepth for the vegetation type (Table 6) and zt is the total depth of the soil
model. For transpiration Et, the flux extracted from soil layer k is e0

k Et, where

e0k =
rkβk

∑

k rkβk
(33)

and

βk =







1 θk ≥ θc

(θk − θw)/(θc − θw) θw < θk < θc,
0 θk ≤ θw

(34)

is a soil moisture availability factor for a soil layer with unfrozen volumetric soil moisture concentra-
tion θk, critical point θc and wilting point θw.
Bare-soil evaporation is calculated using a conductivity

gsoil =
1

100

(

θ1
θc

)2

(35)

and is extracted from the surface soil layer for both bare-soil tiles and fraction 1 − fr of vegetated
tiles (Equation 3). Adding the soil and canopy conductances in parallel to give a total surface
conductance gs = gc + (1− fr)gsoil, the fraction of the evapotranspiration extracted from each soil
layer is

e1 =
gce

o
1 + (1 − fr)gsoil

gs
(36)

for the surface layer and

ek =
gce

o
k

gs
(37)

for lower layers.
The total evaporation from a tile is E = ψE0, where E0 is the potential evaporation,

ψ = fa + (1 − fa)
gs

gs + CHU1
(38)

and fa is the fraction of the tile which is saturated and hence has aerodynamic resistance only;
fa = 1 for lake, ice or snow-covered tiles, and fa = C/Cm for a vegetated tile with canopy moisture
content C (kg m−2) and canopy capacity Cm = 0.5 + 0.05Λ. The urban tile is also given a small
surface capacity of 0.5 kg m−2.
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dr (m)
Broadleaf trees 3
Needleleaf trees 1
C3 grass 0.5
C4 grass 0.5
Shrubs 0.5

Table 6. Rootdepths from PFTPARM.cdk.

3.4 Surface energy balance

Surface temperature T∗ is interpreted as a surface skin temperature unless the canopy model is
selected, in which case it is a canopy layer temperature for vegetated tiles. In the absence of
snowmelt, the surface energy balance for each tile is

Cc
dT∗
dt

= RN +QH −H − LE −G0, (39)

where the surface net radiation is

RN = SWN + LW↓ − εcσT
4
∗ , (40)

QH is the anthropogenic heat source H and E are fluxes of sensible heat and moisture, and L is
the latent heat of vaporization for snow-free tiles or sublimation for snow-covered or ice tiles. The
heat flux into the ground, combining radiative (assuming only one reflection) and turbulent fluxes
below vegetation canopies and conductive fluxes for the unvegetated fraction, is parametrized as

G0 = fr[εcεs(σT
4
∗ − σT 4

s ) + cpRKHcan(T∗ − Ts)] + (1 − fr)
2λ

∆zs
(T∗ − Ts) (41)

where ∆zs and Ts are the thickness and temperature of the surface soil layer, RKHcan is the
turbulent exchange coefficient between the canopy and the underlying soil and εs is the emissivity
of the soil. Canopy fraction fr is given by Equation (3) if the canopy model is selected but is set
to zero otherwise. The thermal conductivity, λ, is equal to the soil conductivity λsoil for snow-free
tiles, but is adjusted for insulation by snow of depth d according to

λ =

{

λsoil

[

1 + 2d
∆zs

(

λsoil

λsnow
− 1

)]−1
d < ∆zs/2

λsnow d ≥ ∆zs/2,
(42)

with λsnow = 0.265 W m−1 K−1.
Expressions for surface fluxes of sensible heat and moisture over each tile are derived from the bulk
aerodynamic formulae

H = cpRKH(1)

[

T∗ − T1 −
g

cp
(z1 + zo − zoh)

]

(43)

and
E = ψRKH(1) [qsat(T∗, p∗) − q1] , (44)

where RKH(1) = ρCHU1; ρ and cp are the density and heat capacity of air. qsat can be linearized
to give

qsat(T
n+1
∗ , p∗) ≈ qsat(T

n
∗ , p∗) +D(T n+1

∗ − T n
∗ ), (45)
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where

D =
qsat(T

(n)
∗ , p∗) − qsat(T

(n)
1 , p∗)

T
(n)
∗ − T

(n)
1

. (46)

By writing T n+1
∗ = T n

∗ + ∆T∗, and linearizing (T n+1
∗ )4 as

(T n+1
∗ )4 ≈ (T n

∗ )4 + 4(T n
∗ )3(T n+1

∗ − T n
∗ ) (47)

the equations for the turbulent heat and moisture fluxes (equations 43 and 44) and the soil heat
flux (equation 41) can be written as

H = Hex + cpRKH(1)∆T∗ (48)

E = Eex + ψRKH(1)∆T∗ (49)

G0 = G0ex + [fr(4εcεsσ(T n
∗ )3 + cpRKHcan) + (1 − fr)

2λ

∆zs
]∆T∗ (50)

where Hex and Eex are the explicit heat and moisture fluxes and G0ex is the explicit soil heat flux.
Discretizing the time derivative of T∗ between timesteps n and n + 1 as

dT∗
dt

≈ T
(n+1)
∗ − T

(n)
∗

∆t
, (51)

and using equations (39), (48), (49) and (50) to obtain an expression for T∗ gives

∆T∗ =
Rn

N +QH −Hex − Eex −G0ex

RKH(1)(cp + LDψ) + A′

s

(52)

where Rn
N = SWN + LW ↓ −εcσ(T n

∗ )4 is the explicit net radiation and

A
′

s = 4(1 + εsfr)εcσ(T n
∗ )3 + frcpRKHcan + (1 − fr)

2λ

∆zs
+
Cc

∆t
(53)

The value of the surface temperature from equation (52) can then be used in equations (48), (49)
and (50) to obtain fluxes that are consistent with the Penman-Monteith equations.

3.5 Implicit boundary layer fluxes (1)

Increments in temperatures on boundary-layer levels k = 1, . . . , N are calculated as

δTk =
g∆t

∆pk

[FT (k + 1) − FT (k)], (54)

where the fluxes are

FT (k) = −RKH(k)

[

Tk − Tk−1

∆zk−1/2
+
g

cp

]

(55)

for 1 < k ≤ N with boundary conditions FT (N + 1) = 0 and FT (1) = H/cp for gridbox-mean
surface sensible heat flux

H =
∑

j

νjHj. (56)

Implicit fluxes during timestep n are calculated using

Tk = (1 − γk)T
(n)
k + γkT

(n+1)
k (57)

= T
(n)
k + γkδTk (58)
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where γk is the forward timestep weighting factor for level k. This gives a tridiagonal system of
equations

BTNδTN + CTNδTN−1 = (δTN)ex

ATkδTk+1 + BTkδTk + CTkδTk−1 = (δTk)ex k = 2, . . . , N − 1
AT1δT2 + BT1δT1 = (δT1)ex − (g∆t/∆p1)FT (1)

(59)

with matrix elements

ATk = γk+1
g∆t

∆pk

RKH(k + 1)

∆zk+1/2

k = 1, . . . , N − 1 (60)

BTk =







1 − CTN k = N
1 − ATk − CTk k = 2, . . . , N − 1
1 − AT1 k = 1

(61)

and

CTk = γk
g∆t

∆pk

RKH(k)

∆zk−1/2

k = 2, . . . , N. (62)

The explicit increments on the rhs of Equation (59) are

(δTk)ex =































−(g∆t/∆pN )F
(n)
T (N) k = N

(g∆t/∆pN)[F
(n)
T (k + 1) − F

(n)
T (k)] k = 2, . . . , N − 1

(g∆t/∆p1)F
(n)
T (2) k = 1

(63)

where the explicit fluxes are given by Equation (55) with temperatures at the beginning of the
timestep. A downward sweep to eliminate the below-diagonal elements in (59) gives

δTk + C ′
TkδTk−1 = δT ′

k k = 2, . . . , N
δT1 = δT ′

1 − βFT (1)
(64)

where C ′
Tk = CTk/B

′
Tk with

B′
Tk =



























1 − CTN k = N

1 − ATk(1 + C ′
Tk+1) − CTk k = 2, . . . , N − 1

1 − AT1(1 + C ′
T2) k = 1

(65)

β =
g∆t

∆pk

1

B′
Tk

(66)

and

δT ′
k =











(δTN)ex/B
′
TN k = N

[(δTk)ex − ATkδT
′
k+1]/B

′
TN k = 1, . . . , N − 1

(67)

An analogous set of equations links the humidity increments and the gridbox-mean surface evapo-
ration.
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3.6 Implicit surface fluxes

Writing the level-1 temperature and humidity as

T1 = T
(n)
1 + γ1δT1 (68)

and
Q1 = Q

(n)
1 + γ1δQ1 (69)

in Equations (43) and (44), taking gridbox means gives

H

cp
=
∑

j

νj

H
(n)
j

cp
+ A1δT1 + A2δQ1 (70)

and
E =

∑

j

νjE
(n)
j +B1δT1 +B2δQ1, (71)

where
A1 = −γ1

∑

j

νjRKPMj[LDjψjRKH(1)j + A∗j], (72)

A2 = γ1

∑

j

νjRKPMjLψjRKH(1)j, (73)

B1 = γ1cp
∑

j

νjRKPMjDjψjRKH(1)j (74)

and
B2 = −γ1

∑

j

νjRKPMjψj[cpRKH(1)j + A∗j ]. (75)

Substituting Equation (64) for δT1 and the analogous equation for δQ1 in Equations (70) and (71),
solving for the gridbox-mean fluxes gives

H

cp
=

(1 + βB2)[FT (1)(n) + A1δT
′
1 + A2δQ

′
1] − βA2[FQ(1)(n) +B1δT

′
1 +B2δQ

′
1]

(1 + βA1)(1 + βB2) − β2A2B1
(76)

and

E =
(1 + βA1)[FQ(1)(n) +B1δT

′
1 +B2δQ

′
1] − βB1[FT (1)(n) + A1δT

′
1 + A2δQ

′
1]

(1 + βA1)(1 + βB2) − β2A2B1
. (77)

Tile fluxes are recovered as

Hj

cp
=
H

(n)
j

cp
− γ1RKPMj[LDjψjRKH(1)j + A∗j ][δT

′
1 − βH/cp] (78)

+ γ1RKPMjLψjRKH(1)j[δQ
′
1 − βE] (79)

and

Ej = E
(n)
j + γ1RKPMjDjψjRKH(1)j[cpδT

′
1 − βH] (80)

− γ1RKPMjψj[cpRKH(1)j + A∗j ][δQ
′
1 − βE]. (81)

A first estimate of the surface temperature for each tile is diagnosed as

T∗ = Ts +
1

A∗

[

Rs −H − LE +
Cc

∆t

(

T (n)
∗ − Ts

)

]

. (82)

This has to be adjusted if evaporation exhausts any of the moisture stores during the timestep or if
the tile has a melting snowcover.
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3.6.1 Limited evaporation

Downward surface moisture fluxes are added to canopy moisture or, if the surface temperature is
below freezing, snowcover.
For an upward total moisture flux E, the rates of evaporation from the canopy and soil moisture
stores are

Ec = fa
E

ψ
(83)

and

Es = (1 − fa)ψs
E

ψ
(84)

where
ψs =

gs

gs + CHU1
. (85)

If the predicted canopy evaporation would exhaust the canopy moisture store C during a timestep,
the soil evaporation is recalculated as

Es = ψs

(

1 − faC

Ec∆t

)

E

ψ
(86)

and Ec is reset to C/∆t (see ?). If Es would then exhaust the available soil moisture m, it is limited
to m/∆t.
For an adjustment ∆(LE) in the latent heat flux, repartitioning the surface energy balance gives
adjustments

∆H = −
[

1 +
A∗

cpRKH(1)

]−1

∆(LE) (87)

and

∆T∗ = −∆H + ∆(LE)

A∗

(88)

in the surface sensible heat flux and temperature.
Evaporation from a lake tile (or the lake fraction of an aggregated surface) is not limited and does
not draw on the conserved moisture stores.

3.6.2 Snowmelt

Equation (39) neglects snowmelt heat fluxes in the surface energy balance. If T∗ > Tm for a
snow-covered tile and sufficient snow is available, T∗ is reset to Tm by adding an increment

∆T∗ = Tm − T∗, (89)

corresponding to a snowmelt heat flux

Sm = −[(cp + LsD)RKH(1) + A∗]
∆T∗
Lf

. (90)

The maximum melt rate that can be sustained over a timestep ∆t, however, is S/∆t− E, giving

∆T∗ =
Lf (S/∆t− E)

(cp + LcD)RKH(1) + A∗

. (91)
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∆T∗ is set to the smaller of the values given by Equations (90) and (91), and the surface energy
balance is repartioned by adding increments

∆H = cpRKH(1)∆T∗ (92)

and
∆E = DRKH(1)∆T∗ (93)

to the tile heat and moisture fluxes.

3.7 Implicit boundary layer fluxes (2)

After adjustment of the surface fluxes, an upward sweep through the matrix equation gives temper-
ature increments

δT1 = δT ′
1 − βH/cp, (94)

δTk = δT ′
k − C ′

TkδTk−1 k = 2, . . . , N (95)

and humidity increments

δQ1 = δQ′
1 − βE, (96)

δQk = δQ′
k − C ′

TkδQk−1 k = 2, . . . , N. (97)

3.8 Screen level diagnostics

Screen level exchange coefficients are calculated for each tile by the same interpolation method as
currently used by the boundary-layer scheme in routine SFL INT. Air temperatures and humidities
over tiles are calculated by SCREEN TQ and averaged to give gridbox-mean values, which are converted
from cloud-conserved forms to actual temperatures and humidities by BL CTL. This conversion is
required if level-1 cloud is present, but has not been applied to the individual tile diagnostics.

4 Hydrology

4.1 Surface hydrology

The partitioning of precipitation into interception, throughfall, runoff and infiltration is the same as
described in UM Documentation Paper 25 (?) but is applied separately on each tile. For rainfall
rate R covering fraction ε of a gridbox (1 for large-scale rain or condensation and 0.3 for convective
rain), the throughfall from the canopy on a vegetated tile is calculated as

TF = R
(

1 − C

Cm

)

exp
(

− εCm

R∆t

)

+R
C

Cm
(98)

and the tile canopy water content is updated by

C(n+1) = C(n) + (R− TF )∆t. (99)

Surface runoff is calculated as

Y =















R C
Cm

exp
(

− εKCm

RC

)

+R
(

1 − C
Cm

)

exp
(

− εCm

R∆t

)

K∆t ≤ C

R exp
[

− ε(K∆t+Cm−C)
R∆t

]

K∆t > C
(100)
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where the surface infiltration rate K is equal to βKs; Ks is the soil saturated hydrological conduc-
tivity and β is an enhancement factor, values of which are given in Table 7. Runoff of melt water is
calculated using snowmelt rate Sm in place of R and ε = 1. The flux of water into the soil is given
by the gridbox average

W0 =
∑

j

νj(TFj + Smj − Yj). (101)

β β
Broadleaf trees 4 Urban 0.1
Needleleaf trees 4 Water 0
C3 grass 2 Soil 0.5
C4 grass 2 Ice 0
Shrubs 2

Table 7. Infiltration enhancement factors from PFTPARM.cdk and NVEGPARM.cdk.

4.2 Soil Thermodynamics

As in MOSES I, subsurface temperatures are updated using a discretized form of the heat diffusion
equation, which is coupled to the soil hydrology module through:

• soil water phase changes and the associated latent heat

• soil thermal characteristics which are dependent on soil moisture content (liquid water and
ice).

The temperature of the nth soil layer, of thickness ∆zn, is incremented by the diffusive heat fluxes
into and out of the layer, Gn−1 and Gn respectively, and the net heat flux, Jn, advected from the
layer by the moisture flux:

CA ∆zn
dTn

dt
= Gn−1 −Gn − Jn ∆zn (102)

The diffusive and advective fluxes are given by:

G = λ
∂T

∂z
(103)

J = cw W
∂T

∂z
(104)

where z is the vertical coordinate, W is the vertical flux of soil moisture (calculated within the
soil hydrology module), cw is the specific heat capacity of water, and λ is the local soil thermal
conductivity (?), modified in the presence of lying snow (see 3.4). The “apparent” volumetric heat
capacity of the layer, CA, is given by:

CA = Cs + ρwcwΘu + ρiciΘf + ρw {(cw − ci)T + Lf}
∂Θu

∂T
(105)

where Θu and Θf are the volumetric concentrations of frozen and unfrozen soil moisture, and ρi

and ci are the density and specific heat capacity of ice. The first three terms on the right hand
side of Equation (105) represent contributions from dry soil, liquid water and ice, and the final term
is the apparent heat capacity associated with phase changes. The relationship between unfrozen
water concentration, Θu, and temperature, T , can be derived by minimizing the Gibbs free energy
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of the soil-water-ice system (?). This results in an equation relating the water suction, Ψ (m), to
the temperature, T (K), when ice is present (?, ?):

Ψ = −k
{

ρi

ρw

Lf

Tmg

}

(T − Tm) (106)

where Tm (K) is the freezing point of pure water, g is the acceleration due to gravity and k is a
dimensionless constant which depends on the nature of the soil. A value of k = 1.0 is assumed,
which is consistent with a clay-rich soil for which absorption forces dominate over capillary forces.
(k = 2.2 would be more appropriate for granular soils (?)). Combining Equation (106) with the ?
form (Equation 119) for the suction as a function of liquid water yields:

Θmax
u

Θs
=

{

−κ(T − Tm)

Ψs

}−1/b

(107)

where Θmax
u is the maximum unfrozen water that can exist at temperature T , Θs is the saturation

soil moisture concentration, Ψs and b are other soil specific parameters and κ is a constant defined
by:

κ = k
ρi

ρw

Lf

gTm

≈ 114.3 m K−1 (108)

The actual value of Θu is limited by the total water content of the soil:

Θu = min {Θmax
u ,Θ} (109)

where Θ is the “liquid” total volumetric concentration, i.e. that which would arise if all the moisture
was in liquid form:

Θ = Θu +
ρi

ρw

Θf (110)

The temperature above which all soil moisture is unfrozen, Tmax, can be derived by equating Θ to
Θmax

u in Equation (107):

Tmax = Tm − Ψs

κ

{

Θs

Θ

}b

(111)

The second term on the right hand side represents the suppression of the initial freezing point. It is
useful to rewrite Equation (109) in terms of two distinct temperature regimes:

Θu =

{

Θmax
u if T < Tmax

Θ if T ≥ Tmax
(112)

then differentiation with respect to temperature yields:

∂Θu

∂T
=



















κΘs

bΨs

{

−κ(T − Tm)

Ψs

}(−1/b−1)

if T < Tmax

0 if T > Tmax

(113)

which is used in Equation (105). The surface soil heat flux, G0, is calculated in boundary layer
routine SF IMPL as a residual in Equation (39). Heat advection by surface infiltration is currently
neglected. The lower boundary condition corresponds to zero vertical gradient in soil temperature.
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4.3 Soil Hydrology

The soil hydrology component of MOSES 2.2 is based on a finite difference approximation to the
Richards’ equation (?), with the same vertical discretization as the soil thermodynamics module.
The prognostic variables of the model are the total soil moisture content within each layer:

M = ρw ∆zΘs {Su + Sf} (114)

where ∆z is the thickness of the layer, and Su and Sf are the mass of unfrozen and frozen water
within the layer as a fraction of that of liquid water at saturation:

Su =
Θu

Θs
(115)

Sf =
ρi

ρw

Θf

Θs

(116)

The total soil moisture content within the nth soil layer is incremented by the diffusive water flux
flowing in from the layer above, Wn−1, the diffusive flux flowing out to the layer below, Wn, and
the evapotranspiration extracted directly from the layer by plant roots and soil evaporation, En:

dMn

dt
= Wn−1 −Wn − En (117)

En is calculated from the total evapotranspiration, Et, based on the profiles of soil moisture and
root density, En = enEt. The en weighting factors are described in section 3.3. The water fluxes
are given by the Darcy equation:

W = K

{

∂Ψ

∂z
+ 1

}

(118)

where K is the hydraulic conductivity and Ψ is the soil water suction. To close the model it is
necessary to assume forms for the hydraulic conductivity and the soil water suction as a function
of the soil moisture concentration. The dependencies suggested by ? are most often used in GCM
land-surface schemes, primarily because of their relative simplicity. In addition the work of ? offers
a means of linking the parameters which define these curves to soil particle size distribution. More
sophisticated dependencies, such as those derived by ?, can be included with fairly minor code
modification. However,the Clapp and Hornberger relations are currently used by default in MOSES
2:

Ψ = Ψs S
−b
u (119)

K = Ks S
2b+3
u (120)

where Ks, Ψs and b are empirical soil dependent constants. The interpretation of the Clapp-
Hornberger relations in terms of unfrozen rather than total soil moisture is consistent with the
observation that the freezing of soil moisture reduces hydraulic conductivity and produces a large
suction by reducing the unfrozen water content (?).
The top boundary condition for the soil hydrology module is given by Equation (101). The default
lower boundary condition corresponds to “free drainage”:

WN = KN (121)

where WN is the drainage from the lowest deepest soil layer and KN is the hydraulic conductivity
of this layer.
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4.4 Soil numerics

A key difference between the MOSES I soil scheme and that used in MOSES 2.2 concerns the
numerical scheme used to update soil moisture and soil temperatures through Equations (102) and
(117). MOSES I used a simple explicit scheme, in which the fluxes on the righthandside of these
equations are calculated from the beginning of timestep values of T and M . By contrast, MOSES
2.2 includes an implicit scheme which remains numerically stable and accurate at much longer
timesteps and higher vertical resolution. Although this scheme has a relatively small impact on the
model performance at the standard soil model resolution (4 soil layers with thicknesses from the top
of 0.1, 0.25, 0.65, 2.0 metres), it does make it feasible for users to choose many more soil layers
without incurring massive computational costs (see for example ?).
The prognostic equations for the soil (Equations 102 and 117) take the form:

dYn

dt
= Fn−1 − Fn − sn (122)

where Yn = {Tn,Mn}, Fn = {Gn/CA,Wn} and sn = {Jn/CA, En}. The fluxes Fn are a function
of the prognostic variables Yn. In the explicit MOSES I scheme the Fn were calculated using the
values of Yn at the beginning of timestep t, denoted Y t

n. In MOSES 2.2 these same fluxes are
calculated using a forward timestep weighting, γ, such that:

Fn = F t
n + γ

∂Fn

∂Yn
∆Yn + γ

∂Fn

∂Yn+1
∆Yn+1 (123)

where ∆Yn is the increment to Yn during the timestep t to t + ∆t. The derivatives of the fluxes
with respect to the prognostic variables are calculated in subroutines DARCY, HYD CON and SOIL HTC.
Equation (123) can be substituted into Equation (122) to yield a series of n simultaneous equations
for the n prognostic variables:

an ∆Yn−1 + bn ∆Yn + cn ∆Yn+1 = dn (124)

where:

an = −γ∆t
∂Fn−1

∂Yn−1
(125)

bn = ∆z − γ∆t

[

∂Fn−1

∂Yn
− ∂Fn

∂Yn

]

cn = −γ∆t
∂Fn

∂Yn+1

dn = ∆t
{

F t
n−1 − F t

n − st
n

}

The lefthandside of this equation represents the explicit update to the variable Yn as in MOSES I.
Note that no implicit correction is made to the sink term, sn, since this would require an unwieldy
implicit update to the entire coupled soil hydrology, soil thermodynamics and boundary layer system.
By treating this term explicitly we decouple the updates to the soil temperatures and soil moistures,
such that these variables can be incremented independently on each timestep. The equations
represented by (124) are a tridiagonal set which can be solved routinely by Gaussian elimination (see
appendix A for details).
The other major numerical difference between MOSES I and MOSES 2.2 involves the treatment of
supersaturation in a soil layer. This can occur by two separate means. The first is a numerical artifact
arising from the use of a finite timestep during which a very large quantity of incident water (for
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example from a very intense rainstorm) can overfill the top soil layer. This occurred very infrequently
in MOSES I (owing to the relatively thick top soil layer) and should be even less common within the
implicit soil scheme of MOSES 2.2. Nevertheless, supersaturation can still occur when drainage from
the base of a soil layer is impeded (either by frozen soil water or an assumed reduction of Ks with
depth). Under these circumstances it may be necessary to return the soil water content in a layer to
the saturation value. In MOSES I the excess water in a layer was arbitrarily routed downwards. The
justification for this was weak, but based on the idea that such excess moisture might flow overland
for some fraction of a large GCM gridbox, but would eventually move down through the soil profile
at subgrid locations in which drainage is less impeded (e.g. where there is fractured permafrost
or less compacted-faster draining soil types). However, this assumption was found to lead to poor
runoff simulation and excessive soil moisture in the PILPS2d tests of MOSES I (?). In MOSES 2.2
excess moisture in a soil layer is instead removed by lateral flow which contributes to a larger fast
runoff component. This alternative assumption is more consistent with the improved soil numerics
(which should not lead to supersaturation as a numeric artifact), and results in much better water
budgets for permafrost regions, such as the PILPS2d Valdai site.

5 Parameter aggregation

A single tile version of MOSES 2.2 can be selected by setting NTILES=1 in namelists RECON and
NLSIZES. Separate surface parameters are still calculated for each surface type within a gridbox,
but they are aggregated by routines SPARM, TILE ALBEDO and PHYSIOL before use. Albedos (αi),
maximum infiltration rate (βKs), canopy heat capacity (Cc), canopy coverage (fr) and soil moisture
extraction fractions (ek) are simply area-averaged. Canopy water capacity (Cm) and surface conduc-
tance (gs) are averaged over the non-lake fractions of gridboxes. Roughness lengths are aggregated
at a blending height lb (set to 20 m in BLEND H.cdk) using the method of Mason (1988) to give

zo = lb exp











−




∑

j

νj

ln2(lb/zoj)





−1/2










. (126)
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A Gaussian Elimination

The set of equations represented by (124) is solved by a two-sweep algorithm (subroutine GAUSS).
Firstly, in an upward sweep, the ∆Yn+1 terms are eliminated by transforming the nth equation,
Eq(n), thus:

Eq(n) −→ Eq(n)′ = b′j+1Eq(n) − cnEq(n+ 1)′ (127)

where ′ denotes a transformed equation or variable. Under this transformation the nth equation
becomes:

a′n ∆Yn−1 + b′n ∆Yn = d′n (128)

where:

a′n = b′n+1 an (129)

b′n = b′n+1 bn − a′n+1 cn

d′n = b′n+1 dn − d′n+1 cn

In the upward sweep a′n, b′n and d′n are evaluated iteratively beginning at the lowest soil layer, (N),
where the lower boundary conditions of the soil model imply cN = 0 such that a′N = aN , b′N = bN
and d′N = dN . In the downward sweep the increments to the prognostics variables, ∆Yn are derived
iteratively from the top downwards using Equation (128):

∆Yn =
d′n − a′n ∆Yn−1

b′n
(130)

The top boundary conditions of the soil model imply a1 = 0 such that ∆Y1 = d′1/b
′
1.

B Array indexing

Routine TILEPTS sets array elements TILE PTS(J) to the number of gridboxes including surface
type j and TILE INDEX(I,J) to the land array index of the ith gridbox containing surface type j.
Calculations for a specific surface type are only performed in gridboxes where that surface type is
present. In UM version 4.5, loops of surface types and gridboxes take the form

DO N=1,NTILES

DO J=1,TILE_PTS(N)

L = TILE_INDEX(J,N) ! Land field index

I = LAND_INDEX(L) ! Full field index

.

.

.

ENDDO

ENDDO

In version 5.2, two-dimensional indices are used for full field arrays :

DO N=1,NTILES

DO K=1,TILE_PTS(N)

L = TILE_INDEX(K,N)

J = (LAND_INDEX(L)-1)/ROW_LENGTH + 1

I = LAND_INDEX(L) - (J-1)*ROW_LENGTH
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.

.

.

ENDDO

ENDDO

For use in NI rad ctl, the I and J indices are stored in arrays land index i and land index j.
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Abstract

This note describes the terrestrial carbon cycle component of the Hadley Centre’s coupled
climate-carbon cycle model (?). “TRIFFID (Top-down Representation of Interactive Foliage and
Flora Including Dynamics)” is a dynamic global vegetation model, which updates the plant dis-
tribution and soil carbon based on climate-sensitive CO2 fluxes at the land-atmosphere interface.
The surface CO2 fluxes associated with photosynthesis and plant respiration are calculated in the
MOSES 2 tiled land-surface scheme (?), on each atmospheric model timestep (normally 30 min-
utes), for each of 5 plant functional types. The area covered by a plant type is updated (normally
every 10 days) based on the net carbon available to it and on the competition with other plant
types, which is modelled using a Lotka-Volterra approach. Soil carbon is increased by litterfall,
which can arise from local processes such as leaf-drop as well as large-scale disturbances which re-
duce the vegetated area. Soil carbon is returned to the atmosphere by microbial respiration which
occurs at a rate dependent on soil moisture and temperature. TRIFFID has been designed to al-
low economical diagnosis of initial states using a Newton-Raphson descent towards the equilibrium
state consistent with a given climate.

1 Introduction

Over the last decade a number of groups have developed equilibrum biogeography models which
successfully predict the global distribution of vegetation based on climate (?, ?). Such models have
been coupled “asynchronously” to GCMs in order to quantify climate-vegetation feedbacks. This
involves an iterative procedure in which the GCM calculates the climate implied by a given landcover,
and the vegetation model calculates the landcover implied by a given climate. The process is repeated
until a mutual climate-vegetation equilibrium is reached (?), ?). Such techniques have yielded very
interesting results but suffer from two main limitations. Firstly, such asynchronous coupling may hide
inconsistencies since the climate model and the vegetation model can represent common processes
(such as the surface water balance) in different ways. This can lead to a mismatch between the
variables and fluxes calculated in each. The second limitation is due to the implicit assumption that
the climate and vegetation are in an equilibrium state. Although this may be an reasonable assumption
for studying different vegetation-climate states on the timescales of interest in palaeoclimate modelling
(?), it is not appropriate for simulating transient climate change over the next century, during which
time the terrestrial biosphere is likely to be far from an equilibrium state.

In order to fully understand the role of climate-vegetation feedbacks on these timescales we need
to treat the landcover as a interactive element, by incorporating dynamic global vegetation models
(DGVMs) directly within climate models. The earliest DGVMs were based on bottom-up “gap”
forest models, which explicitly model the growth, death and competition of individual plants (?;
?). Such models can produce very detailed predictions of vegetation responses to climate, but they
are computationally expensive for large-scale applications. Also, GCM climates are not likely to be
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sensitive to the details of the species or age composition of the landcover. For this study it is more
appropriate to adopt a “top-down” DGVM approach, in which the relevant land-surface characteristics,
such as vegetated fraction and leaf area index, are modelled directly (?). A model of this type, called
“TRIFFID” (“Top-down Representation of Interactive Foliage and Flora Including Dynamics”), has
been developed at the Hadley Centre for use in coupled climate-carbon cycle simulations (?).

2 Coupling to the GCM Land-Surface Scheme

TRIFFID defines the state of the terrestrial biosphere in terms of the soil carbon, and the structure
and coverage of five plant functional types (Broadleaf tree, Needleleaf tree, C3 grass, C4 grass and
shrub). The areal coverage, leaf area index and canopy height of each PFT are updated using a “carbon
balance” approach, in which vegetation change is driven by net carbon fluxes calculated within the
“MOSES 2” land surface scheme. MOSES 2 is a “tiled” version of the land surface scheme described by
?, in which a separate surface flux and temperature is calculated for each of the landcover types present
in a GCM gridbox. In its standard configuration, MOSES 2 recognises the five TRIFFID vegetation
types plus four non-vegetation landcover types (bare soil, inland water, urban areas and land ice).
Carbon fluxes for each of the vegetation types are derived using the coupled photosynthesis-stomatal
conductance model developed by ?, which utilises existing models of leaf-level photosynthesis in C3

and C4 plants (?, ?). Full details of this part of MOSES 2 are given in appendix ??. The resulting
rates of photosynthesis and plant respiration are dependent on both climate and atmospheric CO2

concentration. Therefore, with this carbon-balance approach, the response of vegetation to climate
occurs via climate-induced changes in the vegetation to atmosphere fluxes of carbon.

Figure ?? is a schematic showing how the MOSES 2 land-surface scheme is coupled to TRIFFID
for each vegetation type. The land-atmosphere fluxes (above the dotted line) are calculated within
MOSES 2 on every 30 minute GCM timestep and time-averaged before being passed to TRIFFID
(usually every 10 days). TRIFFID (below the dotted line of figure ??) allocates the average net
primary productivity over this coupling period into the growth of the existing vegetation (leaf, root
and wood biomass), and to the expansion of the “vegetated area”. Leaf phenology (bud-burst and leaf
drop) is updated on an intermediate timescale of 1 day, using accumulated temperature-dependent
leaf turnover rates. After each call to TRIFFID the land surface parameters required by MOSES 2
(e.g. albedo, roughness length) are updated based on the new vegetation state, so that changes in the
biophysical properties of the land surface, as well as changes in terrestrial carbon, feedback onto the
atmosphere (figure ??). The land surface parameters are calculated as a function of the type, height
and leaf area index of the vegetation, as described in section ??

Unlike the simplest asynchronous coupling techniques this structure ensures consistency between
the surface hydrological states “seen” by the atmosphere and the vegetation. This is achieved by
having a strong demarcation between the processes represented in TRIFFID and those represented
in the MOSES 2 land-surface scheme. Specifically, MOSES 2 calculates instantaneous carbon fluxes
(consistent with the modelled surface energy and water fluxes) using parameters provided by TRIF-
FID, whilst TRIFFID updates the vegetation and soil state (and associated parameters) using the
accumulated fluxes passed from MOSES 2.

3 Vegetation Dynamics

At the core of TRIFFID are first order differential equations describing how the vegetation carbon
density, Cv, and fractional coverage, ν, of a given PFT are updated based on the carbon balance of
that PFT and on competition with other PFTs:

dCv

dt
= (1 − λ)Π − Λl (1)
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Cv
dν

dt
= λΠ ν∗







1 −
∑

j

cij νj







− γν ν∗ Cv (2)

where ν∗ = MAX {ν, 0.01}, and Π is the net primary productivity per unit vegetated area of the PFT
in question (as calculated in the MOSES 2 land surface scheme). A fraction λ of this NPP is utilised in
increasing the fractional coverage (equation ??), and the remainder increases the carbon content of the
existing vegetated area (equation ??). Equation ?? therefore represents the local carbon balance as
utilised in most terrestrial carbon cycle models. TRIFFID is unusual in that this is coupled to equation
??, which is based on the the Lotka-Volterra approach to intraspecies and interspecies competition
(see for example ?). Lotka-Volterra equations are used frequently in theoretical population dynamics
but have not previously been applied in a DGVM. In order to do so here, we have replaced the usual
population state variable of number density with the fractional area covered by the PFT, and driven
increases in ν directly with NPP (via the first term on the righthandside of equation ??). Under
most circumstances the variable ν∗ is identical to the areal fraction, ν, but each PFT is “seeded” by
ensuring that ν∗ never drops below the “seed fraction” of 0.01.

The competition coefficients, cij , represent the impact of vegetation type “j” on the vegetation
type of interest (type “i”, although for clarity this subscript has been dropped from other variables
in equations ?? and ??). These coefficients all lie between zero and unity, so that competition for
space acts to reduce the growth of ν that would otherwise occur (i.e. it produces density-dependent
litter production). Each PFT experiences “intraspecies” competition, with cii = 1 so that vegetation
fraction is always limited to be less than one. Competition between natural PFTs is based on a tree-
shrub-grass dominance heirachy, with dominant types “i” limiting the expansion of subdominant types
“j” (cji = 1), but not vice-versa (cij = 0). However, the tree types (broadleaf and needleleaf) and
grass types (C3 and C4) co-compete with competition coefficients dependent on their relative heights,
hi and hj:

cij =
1

1 + exp {20 (hi − hj)/(hi + hj)}
(3)

The form of this function ensures that the ith PFT dominates when it is much taller, and the jth PFT
dominates in the opposite limit. The factor of 20 was chosen to give co-competition over a reasonable
range of height differences. Some allowance is made for agricultural regions, from which the woody
types (i.e. trees and grasses) are excluded, and C3 and C4 grasses are reinterpreted as “crops”.

The λ partitioning coefficient in equations ?? and ?? is assumed to be piecewise linear in the leaf
area index, with all of the NPP being used for growth for small LAI values, and all the NPP being
used for “spreading” for large LAI values:

λ =































1 for Lb > Lmax

Lb − Lmin

Lmax − Lmin
for Lmin < Lb ≤ Lmax

0 for Lb ≤ Lmin

(4)

where Lmax and Lmin are parameters describing the maximum and minimum leaf area index values
for the given plant functional type, and Lb is the “balanced” LAI which would be reached if the plant
was in “full leaf”. The actual LAI depends on Lb and the phenological status of the vegetation type,
which is updated as a function of temperature (see section ??).

Changes in vegetation carbon density, Cv, are related allometrically to changes in the balanced
LAI, Lb. First, Cv is broken down into leaf, L, root, R, and total stem carbon, W:

Cv = L + R + W (5)
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Then each of these components are related to Lb. Root carbon is set equal to leaf carbon, which is
itself linear in LAI, and total stem carbon is related to Lb by a power law (?):

L = σl Lb (6)

R = L (7)

W = awl L
5/3
b (8)

Here σl is the specific leaf carbon density (kg C m−2 LAI−1) of the vegetation type, and awl is a
PFT-dependent parameter in the power law relating LAI and total stem biomass. Recent work by ?

suggests that 4/3 (rather than 5/3) may be a more appropriate power to use in the next version of
TRIFFID. Values of canopy height, h, are directly from W as described in section ??.

The local litterfall rate, Λl, in equation ??, consists of contributions from leaf, root and stem
carbon:

Λl = γl L + γr R + γw W (9)

where γl, γr and γw are turnover rates (yr−1) for leaf, root and stem carbon respectively. The leaf
turnover rate is calculated to be consistent with the phenological module as described in section ??.
The root turnover rate is set equal to the minimum leaf turnover rate γ0 = 0.25 for all PFTs, but the
total stem turnover is PFT-dependent to reflect the different fractions of woody biomass (see table
??). There is an additional litter contribution arising from large-scale disturbance which results in
loss of vegetated area at the prescribed rate γν , as represented by the last term on the righthandside
of equation ??.

4 Leaf Phenology

Leaf mortality rates, γlm, for the tree-types are assumed to be a function of temperature, increasing
from a minimum value of γ0, as the leaf temperature drops below a threshold value, Toff :

γlm =



















γ0 for T > Toff

γ0 {1 + 9 (Toff − T )} for T ≤ Toff
(10)

where Toff = 0◦C for broadleaf trees and Toff = −30◦C for needleleaf trees (?). The factor of 9 is
such that the leaf turnover rate increases by a factor of 10 when the temperature drops 1◦C below
Toff . Equation ?? describes how leaf mortality varies with temperature, but it is not sufficient to
produce realistic phenology. A new variable, p, is introduced which describes the phenological status
of the vegetation:

L = pLb (11)

where L is the actual LAI of the canopy, and Lb is the balanced (or seasonal maximum) LAI as
updated by TRIFFID via the inverse of equation ??. The phenological status, p, is updated on a daily
basis assuming:

• leaves are dropped at a constant absolute rate (γp Lb) when the daily mean value of leaf turnover,
as given by equation ??, exceeds twice its minimum value

• budburst occurs at the same rate when γlm drops back below this threshold, and “full leaf” is
approached assymptotically thereafter:
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dp

dt
=



















−γp for γlm > 2 γ0

γp {1 − p} for γlm ≤ 2 γ0
(12)

where γp = 20 yr−1. The effective leaf turnover rate, γl, as used in equation ??, must also be updated
to ensure conservation of carbon when phenological changes are occurring:

γl =























−
dp

dt
for γlm > 2 γ0

p γlm for γlm ≤ 2 γ0

(13)

Taken together, equation ??, ?? and ?? amount to a “chilling-days” parametrization of leaf phenol-
ogy. A similar approach may be taken for drought-deciduous phenology and for the cold-deciduous
phenology of the other (non-tree) PFTs, but neither is included in this version of TRIFFID.

5 Soil Carbon

Soil carbon storage, Cs, is increased by the total litterfall, Λc, and reduced by microbial soil respiration,
Rs, which returns CO2 to the atmosphere:

dCs

dt
= Λc − Rs (14)

In each gridbox, the total litterfall is made-up of the area-weighted sum of the local litterfall from
each PFT (as given by equation ??), along with terms due to the large-scale disturbance rate, γν , and
PFT competition:

Λc =
∑

i

νi







Λli + γνi Cvi + Πi

∑

j

cij νj







(15)

The competition term (last term on the righthand side of equation ??) is derived by imposing carbon
conservation on the soil-vegetation system as described by equations ??, ?? and ??. It implies that
the NPP of each PFT will be lost entirely as litter once the PFT occupies all of the space available to
it (i.e. when

∑

j cijνj = 1).
The rate of soil respiration, Rs, is dependent on the soil temperature, Ts, volumetric soil moisture

concentration, Θ, and soil carbon content, Cs:

Rs = κs Cs fΘ fT (16)

where κs = 5× 10−9 s−1 is the specific soil respiration rate at 25 ◦ C, and fΘ and fT are moisture and
temperature dependent functions respectively. The latter is assumed to take the “Q10” form:

fT = q
0.1 (Ts−25)
10 (17)

where Ts is the soil temperature in ◦C and q10 = 2.0. The moisture dependence is based on the
model of ? in which the respiration rate increases with soil moisture content until an optimum value
of moisture is reached. Thereafter the rate of respiration is reduced with further increases in soil
moisture. The curves presented by ? were approximated by piecewise linear functions in order to
minimise the number of additional soil variables required.

fΘ =































1 − 0.8 {S − So} for S > So

0.2 + 0.8

{

S − Sw

So − Sw

}

for Sw < S ≤ So

0.2 for S ≤ Sw

(18)
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Here S, Sw and So are the (unfrozen) soil moisture, the wilting soil moisture and the optimum soil
moisture as a fraction of saturation:

S =
Θ

Θs
(19)

Sw =
Θw

Θs
(20)

So = 0.5 {1 + Sw} (21)

where Θ, Θs and Θw are the (unfrozen) soil moisture concentration, the saturation soil moisture
concentration and the wilting soil moisture concentration respectively.

6 Updating Biophysical Parameters

In order to close the biophysical feedback loop (see figure ??), the land-surface parameters required
by the MOSES 2 land-surface scheme (?) are recalculated directly from the LAI and canopy height
of each PFT, each time the vegetation cover is updated. Values of canopy height, h, are derived by
assuming a fixed ratio, aws, of total stem carbon, W, to respiring stem carbon, S:

W = aws S (22)

where we assume aws = 10.0 for woody plants and aws = 1.0 for grasses (?). Combining with equations
?? and ?? enables canopy height to be diagnosed directly from the total stem biomass:

h =
W

aws ηsl

{

awl

W

}1/bwl

(23)

The aerodynamic roughness lengths, which are used by MOSES 2 to calculate surface-atmosphere
fluxes of heat, water, momentum and CO2, are assumed to be directly proportional to this canopy
height:

z0 =

{

0.05h for trees

0.10h for grasses and shrubs
(24)

where z0 is the roughness length for momentum. The roughness lengths for scalars (heat, water and
CO2) are taken to be 0.1 of this value.

The snow-free albedo of each vegetation tile, α0, is calculated as a weighted sum of the soil albedo,
α00, and a prescribed maximum canopy albedo, α0∞:

α0 = α00 exp {−k L} + α0∞ (1 − exp {−k L}) (25)

where L is the LAI, k = 0.5 and exp {−kL} represents the fraction of the incident light which passes
through to the soil surface. This simple albedo parametrization uses values of α0∞ = 0.1 for tree
types, and α0∞ = 0.2 for grasses and shrubs. The soil albedo is a geographically varying field derived
from the dataset of ?. A similar equation is used to calculate the “cold deep-snow” albedo, but here
both albedo parameters are PFT-dependent. We assume maximum snow albedos of αs0 = 0.3 for
trees, and αs0 = 0.8 for shrubs and grasses. The prescribed minimum snow albedos are; αs∞ = 0.15
for the tree types, αs∞ = 0.6 for grass types and αs∞ = 0.4 for shrubs. In all cases these parameters
were chosen to approximate the albedo values used by ?.

The canopy catchment capacity, cm, which determines the amount of water which is freely available
for evaporation from the surface, varies linearly with LAI:

cm = 0.5 + 0.05L (26)

where the offset of 0.5 represents puddling of water on the soil surface and interception by leafless
plants. The other hydrological land-surface parameters required by MOSES 2 are PFT-dependent,
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but do not depend directly on LAI or canopy height in this version. Root density is taken to fall off
exponentially with depth, such that it is e−2 of its surface value at a specified rootdepth (of 3.0m
for broadleaf trees, 1.0m for needleleaf trees and 0.5m for grasses and shrubs). Roots are assumed to
enhance the maximum surface infiltration rate for water by a factor of 4 for trees, and 2 for the other
PFTs.

7 Spin-up Methodology

Soil carbon and forest area have timescales of order 1000 years to reach equilibrium which means it
is not feasible to carry out this spin-up in the fully coupled GCM. However, it is still vital to reach
a good approximation to the pre-industrial equilibrium. The contemporary carbon sink is only a
small fraction of the gross carbon exchanges between the Earth’s surface and the atmosphere, and any
significant model drift could easily swamp this signal. With this in mind, TRIFFID was designed to
be usable in both “equilibrium” and “dynamic” mode.

This flexibility relies on the numerical design of the model. The TRIFFID equations to update
the plant fractional coverage and leaf area index are written to enable both “explicit” and “implicit”
timestepping. Thus for example, the dynamical equation for leaf area index, L, can be represented
by:

dL

dt
= F (L) (27)

where F is a non-linear function of L. An explicit scheme uses the beginning-of-timestep value, Ln, to
calculate F , whilst a fully implicit scheme uses the end-of-timestep value, Ln+1. In general the update
equation may be written:

∆L

∆t
= F (Ln + f∆L) (28)

where ∆t is the model timestep and f is the “forward timestep weighting factor”, which is 0 for an
explicit scheme and 1 for a fully implicit scheme. Taylor expansion about Ln provides an algebraic
update for L:

∆L =
F (Ln)∆t

1 − f F
′

(Ln)∆t
(29)

where F
′

(Ln) is the derivative of F with respect to L at L = Ln. For f = 1 and large timesteps this
equation reduces to the Newton-Raphson algorithm for iteratively approaching the equilibrium given
by F (L) = 0.

Each of the TRIFFID prognostic equations is written in the form represented by equation ??,
which allows the model to be used in two distinct modes. In “equilibrium mode” TRIFFID is coupled
asynchronously to the atmospheric model, with accumulated carbon fluxes passed from MOSES 2
typically every 5 or 10 years. On each TRIFFID call, the vegetation and soil variables are updated
iteratively using an implicit scheme (f = 1) with a long internal timestep (10,000 years by default).
Offline tests have shown that this approach is very effective in producing equilibrium states for the
slowest variables (e.g. soil carbon and forest cover). In “dynamic mode”, equation ?? is used with
f = 0 and a timestep equal to the TRIFFID-GCM coupling period (typically 10 days).

Although the equilibrium mode is effective at bringing the slower components to equilibrium, it is
often necessary to carry-out a subsequent dynamical TRIFFID run so as to allow the faster varying
components (such as grasses) to come into equilibrium with the seasonally varying climate. During
the pre-industrial spin-up of the HadCM3LC coupled climate-carbon cycle model (?) we completed a
60 year GCM run with TRIFFID in equilibrium mode (5 year coupling period) and followed this by
a GCM simulation of 90 years with TRIFFID in its dynamical mode (10 day coupling period). This
was necessary to meet the rather stringent requirements of net carbon balance set to ensure that the
current carbon sink was not swamped by model drift. For many other purposes (such as simulations
of palaeoclimate-vegetation interactions) much shorter simulations should suffice (e.g. 20 years in
equilibrium mode followed by 10 years in dynamical mode).
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8 Further Reading

We have described the TRIFFID dynamic global vegetation model which has been coupled consis-
tently to the Met Office/Hadley Centre GCM. TRIFFID has already been successfully used in coupled
climate-carbon cycle simulations, where it reproduces the key features of the global vegetation distri-
bution (?) and contributes to realistic variability in the global carbon cycle (?, ?). Scenarios of future
climate change computed with the coupled climate-carbon cycle model suggest that land carbon cy-
cle feedbacks (from TRIFFID) could significantly accelerate global warming in the next century (?).
Copies of these papers and reports can be obtained on request from the author.
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A Vegetation Carbon Fluxes

A.1 Basic Model Structure

Stomatal openings are the pathways through which both water and carbon dioxide are exchanged
between vegetation and the atmosphere. Consequently, net leaf photosynthesis, A (mol CO2 m−2

s−1), and stomatal conductance to water vapour, gs (m s−1), are linked through:

A =
gs

1.6R T∗

(cc − ci) (30)

where R is the perfect gas constant, T∗ (K) is the leaf surface temperature, and cc and ci (Pa) are the
leaf surface and internal CO2 partial pressures respectively. The factor of 1.6 accounts for the different
molecular diffusivities of water and carbon dioxide. Leaf photosynthesis is known to be dependent on
a number of environmental variables as well as the internal CO2 concentration, ci:

A = A( ~X, ci) (31)

where ~X represents a general vector of environmental variables. Equations ?? and ?? contain three
unknowns; A, g and ci. The closure suggested by ? is in MOSES (?, ?):

{

ci − Γ

cc − Γ

}

= F0

{

1 −
D∗

Dc

}

(32)

where Γ is the internal partial pressure of CO2 at which photosynthesis just balances photorespiration
( the “photorespiration compensation point”), D∗ is the humidity deficit at the leaf surface, and F0

and Dc are vegetation specific parameters (see table ??). The leaf photosynthesis models represented
by ?? are based on the work of ? and ? for C3 and C4 plants respectively. Details of these models are
given below. However, an additional direct soil moisture dependence is introduced as suggested by ?:

A = Ap β (33)

where Ap is the “potential” (non-moisture stressed) rate of net photosynthesis as given by the models
described below, and β is the moisture stress factor:

β =































1 for Θ > Θc

Θ − Θw

Θc − Θw
for Θw < Θ ≤ Θc

0 for Θ ≤ Θw

(34)

Here, Θc and Θw are the critical and wilting soil moisture concentrations respectively, and Θ is the
mean soil moisture concentration in the rootzone.

Equations ?? to ?? represent a coupled model of stomatal conductance and leaf photosynthesis.
Large-scale applications require an economical means of scaling the predicted leaf-level fluxes up to the
canopy scale. The approach of ? is used here, in which the primary determinants of photosynthesis,
mean incident photosynthetically active radiation (PAR), Ipar, and the maximum rate of carboxylation
of Rubisco, Vmax, are assumed to be proportional throughout the plant canopy:

Ipar(l) = Ipar(0) exp {−k l} (35)

Vmax(l) = Vmax(0) exp {−k l} (36)

where (l) denotes values beneath l leaf layers, (0) denotes values at the top of the canopy, and k = 0.5
is the PAR extinction coefficient. This assumption ensures that the relative importance of each of
the photosynthesis limiting factors is the same at every depth in the canopy. As a consequence it is
straightforward to integrate the leaf conductance and photosynthesis over the canopy leaf area index,
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L, to yield canopy conductance, gc, net canopy photosynthesis, Ac, and (non-moisture stressed) canopy
dark respiration, Rdc:

gc = g fpar (37)

Ac = Afpar (38)

Rdc = Rd fpar (39)

where g, A and Rd are the conductance, net photosynthesis and (non-moisture stressed) dark respi-
ration rate of the top leaf layer and

fpar =
1 − exp {−k L}

k
(40)

Gross primary productivity, ΠG, is equivalent to the gross canopy photosynthesis:

ΠG = 0.012 {Ac + Rdc β} (41)

where the factor 0.012 converts from units of (mol CO2 m−2 s−1) to (kg C m−2 s−1), and the sec-
ond term in the brackets is the actual (moisture modified) canopy dark respiration. Net primary
productivity, Π (kg C m−2 s−1), is:

Π = ΠG − Rp (42)

where Rp (kg C m−2 s−1) is the total plant respiration. The calculation of Rp is described in subsection
??.

A.2 Leaf Photosynthesis Models

The C3 and C4 photosynthesis models are based on the work of ? and ?, as applied by ?. In both
cases the rate of gross leaf photosynthesis, W (mol CO2 m−2 s−1), is calculated in terms of three
potentially limiting factors:

(i) Wc represents the rate of gross photosynthesis when the photosynthetic enzyme system (RuBP)
is limiting:

Wc =















Vm

{

ci − Γ

ci + Kc (1 + Oa/Ko)

}

for C3 plants

Vm for C4 plants

(43)

where Vm (mol CO2 m−2 s−1) is the maximum rate of carboxylation of Rubisco, Oa (Pa) is the
partial pressure of atmospheric oxygen, and Kc and Ko (Pa) are Michaelis-Menten constants for
CO2 and O2 respectively.

(ii) Wl is the light-limited rate of gross photosynthesis:

Wl =















0.08 (1 − ω) Ipar

{

ci − Γ

ci + 2Γ

}

for C3 plants

0.04 (1 − ω) Ipar for C4 plants

(44)

where Ipar is the incident photosynthetically active radiation (mol PAR photons m−2 s−1) and ω
is the leaf scattering coefficient for PAR. The coefficients of 0.08 and 0.04 represent the “quantum
efficiency” of C3 and C4 plants respectively. We follow ? and ? in assuming ω = 0.15 for C3

plants, and ω = 0.17 for C4 plants.
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(iii) We is the limitation associated with transport of the photosynthetic products for C3 plants, but
is the PEP-Carboxylase limitation for C4 plants (?):

We =















0.5Vm for C3 plants

2 × 104 Vm
ci

p∗
for C4 plants

(45)

where p∗ is the surface air pressure.

The actual rate of gross photosynthesis, W , is calculated as the smoothed minimum of these three
limiting rates:

β1W
2
p − Wp {Wc + Wl} + WcWl = 0 (46)

β2W
2 − W {Wp + We} + WpWe = 0 (47)

where Wp is the smoothed minimum of Wc and Wl, and β1 = 0.83 and β2 = 0.93 are “co-limitation”
coefficients. The smallest root of each quadratic is selected. Finally (non-moisture stressed) net
leaf photosynthesis, Ap, is calculated by subtracting the rate of dark respiration, Rd, from the gross
photosynthetic rate, W :

Ap = W − Rd (48)

The parameters Rd, Vm, Ko, Kc and Γ are all temperature dependent functions derived from ? for
C3 plants and ? for C4 plants:

• Vm, (mol CO2 m−2 s−1) the maximum rate of carboxylation of Rubisco:

Vm =
Vmax fT (2.0)

[1 + exp {0.3 (Tc − Tupp)}] [1 + exp {0.3 (Tlow − Tc)}]
(49)

where Tc is the leaf temperature in ◦C, Tupp and Tlow are PFT-dependent parameters, and fT is
the standard “Q10” temperature dependence:

fT (q10) = q
0.1 (Tc−25)
10 (50)

The standard photosynthesis models of ? and ? assume specific values of Tupp and Tlow for
C3 and C4 plants respectively (Tlow → −∞, Tupp = 36 ◦C for C3 plants, and Tlow = 13 ◦C,
Tupp = 45 ◦C for C4 plants). However, in order to capture the temperature responses of all
terrestrial eceosystems, it is necessary to make these parameters more generally dependent on
PFT (i.e. not just dependent on the photosynthetic pathway). Values of the values chosen are
shown in table ??.

Vmax (mol CO2 m−2 s−1) is assumed to be linearly dependent on the leaf nitrogen concentration,
nl (kg N (kg C)−1):

Vmax =











0.0008nl for C3 plants

0.0004nl for C4 plants

(51)

The constants of proportionality are derived from ? by assuming that dry matter is 40 % carbon
by mass and that the maximum rate of photosynthesis is approximately equal to 0.5Vmax for C3

plants and approximately equal to Vmax for C4 plants.

• Γ, (Pa) the photorespiration compensation point:

Γ =















Oa

2 τ
for C3 plants

0 for C4 plants

(52)

where τ is the Rubisco specificity for CO2 relative to O2:

τ = 2600 fT (0.57) (53)
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• Kc and Ko (Pa), Michaelis-Menten constants for CO2 and O2:

Kc = 30 fT (2.1) (54)

Ko = 3 × 104 fT (1.2) (55)

• The rate of dark respiration, Rd (mol CO2 m−2 s−1) is also assumed to have a “Q10” temper-
ature dependence, with a constant of proportionality which depends on Vmax (i.e. leaf nitrogen
concentration):

Rd =











0.015Vmax fT (2.0) for C3 plants

0.025Vmax fT (2.0) for C4 plants

(56)

Note: this differs from the dark respiration rate used by ? and ?, which was taken to be directly
proportional to Vm as given by ??.

A.3 Plant Respiration

Plant respiration, Rp, is split into maintenance and growth respiration:

Rp = Rpm + Rpg (57)

Growth respiration is assumed to be a fixed fraction of the net primary productivity, thus:

Rpg = rg {ΠG − Rpm} (58)

where ΠG is the gross primary productivity, and the growth respiration coefficient is set to rg = 0.25 for
all plant functional types. Leaf maintenance respiration is equivalent to the moisture modified canopy
dark respiration, βRdc, while root and stem respiration is assumed to be independent of soil moisture,
but to have the same dependences on nitrogen content and temperature. Thus total maintenance
respiration is given by:

Rpm = 0.012Rdc

{

β +
(Nr + Ns)

Nl

}

(59)

where Nl, Ns and Nr are the nitrogen contents of leaf, stem and root, and the factor of 0.012 converts
from (mol CO2 m−2 s−1) to (kg C m−2 s−1). The nitrogen contents are given by:

Nl = nl σl L (60)

Nr = µrl nl R (61)

Ns = µsl nl S (62)

where nl is the mean leaf nitrogen concentration (kg N (kg C)−1), R and S are the carbon contents of
respiring root and stem, L is the canopy leaf area index and σl (kg C m−2) is the specific leaf density.
The nitrogen concentrations of root and stem are assumed to be fixed (functional type dependent)
multiples, µrl and µsl, of the mean leaf nitrogen concentration. In this study, we assume µrl = 1.0
for all PFTS, µsl = 0.1 for woody plants (trees and shrubs) and µsl = 1.0 for grasses. The respiring
stemwood is calculated using a “pipemodel” approach in which live stemwood is proportional to leaf
area, L, and canopy height, h:

S = 0.01hL (63)

The constant of proportionality is approximated from ?.
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Parameter Units Broadleaf Needleleaf C3 Grass C4 Grass Shrub

Tree Tree

awl kg C m−2 0.650 0.650 0.005 0.005 0.100
γν yr−1 0.004 0.004 0.100 0.100 0.030
γw yr−1 0.010 0.010 0.200 0.200 0.050
γ0 yr−1 0.250 0.250 0.250 0.250 0.250
Lmax 9 9 4 4 4
Lmin 3 3 1 1 1

Table 1: PFT-specific parameters for the dynamic vegetation component of TRIFFID. The values of
awl were chosen to give realistic maximum biomass densities from equation ??. The other parameters
were chosen largely by model calibration in offline tests, but realistic constraints were applied. For
example, the large-scale disturbance rate, γν , should yield realistic effective plant lifetimes, and the
total stemwood turnover rate, γw, should reflect the differing percentages of wood amongst the PFTs.
The minimum leaf turnover rate, γ0, was set uniform across the PFTs for simplicity. This value is
also used to specify the turnover of root biomass.

Parameter Units Broadleaf Needleleaf C3 Grass C4 Grass Shrub

Tree Tree

nl(0) kg N (kg C)−1 0.040 0.030 0.060 0.030 0.030
σl kg C m−2 LAI−1 0.0375 0.100 0.025 0.050 0.050
F0 0.875 0.875 0.900 0.800 0.900
Dc kg (kg)−1 0.090 0.060 0.100 0.075 0.100
Tlow

◦C 0 -5 0 13 0
Tupp

◦C 36 31 36 45 36

Table 2: PFT-specific parameters used in the MOSES 2 calculation of vegetation carbon fluxes. The
values for top-leaf nitrogen concentration, nl(0), and specific leaf density, σl, are derived from the
survey of Schulze et al (1994), which suggests that nl(0)σl = 1.5×10−3 kg N m−2 LAI−1 for broadleaf
plants, and nl(0)σl = 3×10−3 kg N m−2 LAI−1 for needleleaf plants. Values of the maximum ratio of
internal to external CO2, F0, and the critical humidity deficit, Dc, are chosen to give realistic maxima
and humidity dependences for the canopy conductance (see for example, Cox et al (1998)). The lower
and upper temperatures for photosynthesis, Tlow and Tupp are consistent with the values prescribed
by Collatz et al (1991) and Collatz et al (1992), except for the introduction of a finite lower bound for
the C3 plants, and the shift of the Vm curve for needleleaf trees by -5◦C.
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Figure 1: Schematic showing TRIFFID carbon flows for each vegetation type. Processes above the
dotted line are fluxes calculated in the MOSES 2 land surface scheme every atmospheric model timestep
(≈ 30 minutes). In dynamic mode, TRIFFID updates the vegetation and soil carbon every 10 days
using time-averages of these fluxes.
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Coupling Between TRIFFID and the GCM

Figure 2: Schematic showing the coupling between TRIFFID and the GCM. Changes in the distribu-
tion and structure of the five plant functional types can provide a feedback to climate via two routes.
The vegetation determines the biophysical land-surface parameters (e.g. albedo, roughness length,
stomatal conductance) which in turn affect the land-atmosphere fluxes of heat, water and momentum.
In addition, changes in the carbon stored in vegetation and soil (as measured by the net ecosystem
productivity, “NEP”) can change the evolution of atmospheric CO2 and thus the climate through
the greenhouse effect. For completeness nitrogen deposition is also shown as a driver for vegetation
change, although this version of TRIFFID does not include an interactive nitrogen cycle.
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