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Abstract: Satellite-based precipitation products (SPPs) are essential for climate monitoring, especially
in regions with sparse observational data. This study compares the performance of the latest version
(V07B) and its predecessor (V06B) of the Integrated Multi-satellitE Retrievals for GPM (IMERG)
across South America and the adjacent oceans. It focuses on evaluating their accuracy under different
precipitation regimes in Brazil using 22 years of IMERG Final data (2000–2021), aggregated into
seasonal totals (summer, autumn, winter, and spring). The observations used for the evaluation
were organized into 0.1◦ × 0.1◦ grid points to match IMERG’s spatial resolution. The analysis was
restricted to grid points containing at least one rain gauge, and in cases where multiple gauges
were present within a grid point the average value was used. The evaluation metrics included the
Root Mean Square Error (RMSE) and categorical indices. The results reveal that while both versions
effectively capture major precipitation systems such as the mesoscale convective system (MCS),
South Atlantic Convergence Zone (SACZ), and Intertropical Convergence Zone (ITCZ), significant
discrepancies emerge in high-rainfall areas, particularly over oceans and tropical zones. Over the
continent, however, these discrepancies are reduced due to the correction of observations in the final
version of IMERG. A comprehensive analysis of the RMSE across Brazil, both as a whole and within
the five analyzed regions, without differentiating precipitation classes, demonstrates that version
V07B effectively reduces errors compared to version V06B. The analysis of statistical indices across
Brazil’s five regions highlights distinct performance patterns between IMERG versions V06B and
V07B, driven by regional and seasonal precipitation characteristics. V07B demonstrates a superior
performance, particularly in regions with intense rainfall (R1, R2, and R5), showing a reduced RMSE
and improved categorical indices. These advancements are linked to V07B’s reduced overestimation
in cold-top cloud regions, although both versions consistently overestimate at rain/no-rain thresholds
and for light rainfall. However, in regions prone to underestimation, such as the interior of the
Northeastern region (R3) during winter, and the northeastern coast (R4) during winter and spring,
V07B exacerbates these issues, highlighting challenges in accurately estimating precipitation from
warm-top cloud systems. This study concludes that while V07B exhibits notable advancements,
further enhancements are needed to improve accuracy in underperforming regions, specifically those
influenced by warm-cloud precipitation systems.

Keywords: satellite precipitation products; evaluation; IMERG V06B; IMERG V07B; Brazil

1. Introduction

Precipitation plays a fundamental role in the hydrological cycle and in sustaining
life on planet Earth. It constitutes the primary means of replenishing water resources,
nourishing rivers, lakes, and aquifers essential for terrestrial and aquatic ecosystems, as
well as for agriculture, industry, and human consumption [1]. Furthermore, precipitation
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regulates the surface temperature and directly influences global climate [2,3]. However,
despite its vital importance, there is a significant lack of precipitation measurements in
critical regions such as deserts [4,5], dense tropical forests [6], and vast oceanic areas [7].
This data gap limits our understanding of global precipitation patterns and hinders the
development of more accurate climate models.

The scarcity of in situ measurements in these challenging environments is attributed
to various factors, including logistical difficulties, high costs of maintaining equipment in
remote areas, and extreme conditions that can damage measuring instruments [8]. Given
these limitations, satellite precipitation estimates emerge as a promising solution to fill these
observational gaps [9–11]. Advanced remote sensing technologies have been developed to
monitor precipitation on a global scale, providing valuable data that complement ground-
based measurements. Satellites offer the advantage of covering vast, hard-to-reach areas
and providing continuous, high-temporal-resolution information [12–15]. This approach
not only enhances our ability to monitor and predict extreme weather events but also
contributes to the development of more efficient, sustainable water resource management
policies [16,17].

Currently, several satellite precipitation products (SPPs) are available. Each utilizes
different methodologies and combinations of data to provide accurate and real-time global
precipitation estimates. Some of the main products available are as follows. Integrated
Multi-satellitE Retrievals for Global Precipitation Measurements (GPM-IMERG), available
by the National Oceanic and Atmospheric Administration (NOAA): This product, oper-
ational since 2014, combines data from multiple satellites to provide global precipitation
estimates with a high temporal (30 min) and spatial (0.1 degrees) resolution. GPM-IMERG
covers data from 2014 to the present [18]. Global Satellite Mapping of Precipitation (GSMaP),
developed by the Japan Aerospace Exploration Agency (JAXA), has been operational since
2003. GSMaP offers global precipitation estimates with a high spatial resolution of 10 km
and a temporal resolution of 1 h, covering data from 2000 to the present [10,19]. CPC
MORPHing technique (CMORPH): This product, developed by the Climate Prediction
Center (CPC) of NOAA, has been available since 2002. It uses microwave data from polar-
orbiting satellites combined with infrared data from geostationary satellites to provide
near-real-time global precipitation estimates with a temporal resolution of 30 min and a
spatial resolution of 0.07277 degrees. CMORPH covers data from 2002 to the present [20].
Precipitation estimation from Remotely Sensed Information using Artificial Neural Net-
works (PERSIANN): This system, operational since the early 2000s, uses machine-learning
techniques to combine data from geostationary and polar-orbiting satellites, providing
global precipitation estimates with a temporal resolution of 3 h and a spatial resolution of
0.25 degrees. PERSIANN covers data from 2000 to the present [21]. Tropical Rainfall Mea-
suring Mission Multi-satellite Precipitation Analysis (TRMM-TMPA): Although the TRMM
mission, which began in 1997, ended in 2015, TMPA data continue to be used and analyzed
for historical tropical precipitation studies. TMPA provides precipitation estimates with
a temporal resolution of 3 h, a spatial resolution of 0.25 degrees, and covers data from
1998 to 2019 [22]. Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS):
This product, operational since 1981, combines satellite data with station data to provide
a high-resolution (0.05 degrees) precipitation time series. CHIRPS covers data from 1981
to the present [23]. Global Precipitation Climatology Project (GPCP): The GPCP, available
since 1979, provides long-term global precipitation data by combining satellite and surface
observations with a monthly temporal resolution and a spatial resolution of 2.5 degrees.
The GPCP covers data from 1979 to the present [24]. These products are essential for a
wide range of applications, including disaster forecasting, water resource management,
agriculture, climate modeling, and hydrological studies.

Among the existing global SPPs, IMERG is one of the most widely used, both in
research and operational applications [25]. This extensive use is due to the product being
generated in three distinct stages, each catering to different needs. The first stage, called
“early run” has a 4-h delay and is intended for immediate operational use. The second
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stage, known as “late run”, has a 14-h delay, offering a balance between speed and accuracy.
The third and final stage, called “final run”, is the most used in research due to its high
precision, although it has a delay of several months. This final stage incorporates rain
gauge data in its formulation, further enhancing the accuracy of precipitation estimates [18].
This flexible structure allows IMERG to serve a wide range of applications, from real-time
monitoring to detailed climate studies.

Although SPPs are indispensable tools in various geoscience fields, they frequently
exhibit errors, particularly in mountainous regions [8,26,27]. Therefore, they must be
carefully evaluated and corrected [28]. Evaluating the performance of SPPs is crucial
to infer the reliability of such estimates and to use them effectively in water resource
management, extreme event characterization, or weather forecasting [29]. Evaluations are
generally conducted by comparing the estimates with rain gauge data, while corrections
can be made using various bias removal techniques, such as statistical calibration [30–32],
observational data fusion [33–35], and machine learning [36–38].

Recently, in mid-2023, the IMERG SSP was updated from version V06 [39] to version
V07 [40]. The significant updates encompass several key improvements: an enhanced inter-
calibration process to address known biases, a corrected gridding process to resolve spatial
offsets, an upgraded IR precipitation retrieval scheme utilizing a modern algorithm, the
integration of passive microwave (PMW) retrievals into the Kalman filter to enhance con-
sistency, and the elimination of PMW retrieval masking over frozen surfaces. The IMERG
V06 version has been widely used and evaluated by numerous studies, both globally [41,42]
and regionally [43–45], demonstrating well-understood and accepted behavior by the sci-
entific community. However, the new V07 version, although already the subject of some
preliminary studies [46,47], still requires additional evaluations to validate its improvements
and adjustments. Given this scenario, the objective of this work is to evaluate and compare
the performance of both versions (V06B and V07B) of IMERG Final in Brazil, considering
the different precipitation regimes present in the country. This analysis is crucial to validate
the accuracy and reliability of the estimates provided by the new version, ensuring its appli-
cability across various climatic regions of Brazil. This paper is organized into five sections.
Following this introduction in Section 1, Section 2 describes the study area, precipitation
regimes, observed data, SPPs, and statistical metrics. Section 3 presents the results of product
comparisons over South America and the evaluation/validation specific to Brazil. Finally, the
discussions and main conclusions are summarized in Sections 4 and 5.

2. Materials and Methods

The precipitation from two versions of IMERG Final (V06B and V07B) was compared
on a seasonal scale over South America and the adjacent oceans, and evaluated under
different precipitation regimes in Brazil. The study period spanned from 2 June 2000 to
30 September 2021. Daily data (accumulated from 12Z of the previous day to 12Z of
the current day) were considered for both observed and estimated values, which were
subsequently converted to summer (DJF), autumn (MAM), winter (JJA), and spring (SON).

2.1. Study Area and Characterization of Precipitation Regimes

Brazil’s vast territorial (8,515,759 km2) extent and climatic diversity give rise to highly
heterogeneous precipitation regimes, characterized by distinct patterns of seasonality, intensity,
and frequency across its regions. To effectively evaluate the performance of SPPs, it is crucial
to classify these regimes, as analyzing the country as a whole risks obscuring critical regional
variations and hindering the identification of errors or inconsistencies. By accounting for
regional specificities, such as the prolonged dry periods in the semi-arid Northeast, the intense
rainfall in the Amazon, and the more evenly distributed precipitation in the subtropical South,
this approach enables more accurate assessments of SPP performance and ensures regionally
tailored analyses. In this context, this study adopts the precipitation regimes classified into five
regions as presented by Rozante et al. [48]. According to the authors, this classification is based
on the analysis of histograms representing the distribution of average monthly precipitation
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for each 2-degree grid box, derived from the MERGE product [33]. This product, operationally
integrated at Instituto Nacional de Pesquisas Espaciais (INPE), combines satellite precipitation
estimates with surface observations, currently covering all of South America and the adja-
cent oceans. With a spatial resolution of 10 km, it provides a continuous data record from
June 2000 to the present.

Figure 1 depicts the spatial distribution of precipitation climatology over Brazil based
on MERGE data. Region R1 (blue): Located in Southern Brazil, it experiences well-
distributed precipitation all year round. Influencing systems include cold fronts, the
mesoscale convective system (MCS), the South Atlantic Convergence Zone (SACZ), and
the low-level jet stream. Region R2 (green): Covering most of Brazil, this region has a clear
monsoon regime, with higher precipitation in summer (DJF) and lower precipitation in
winter (JJA). Region R3 (black): The driest region, located inland in Northeastern Brazil,
has a summer precipitation maximum and a winter precipitation minimum. Key systems
are the Intertropical Convergence Zone (ITCZ) and upper-level cyclonic vortices. Region
R4 (orange): On the northeastern coast, this region sees maximum precipitation in winter
and minimum precipitation in summer. Influencing systems include the ITCZ, tropical
MCS, Trade Winds, upper-level cyclonic vortices, easterly waves, and sea breeze circulation.
Region R5 (red): Located in Northern Amazonia, this region is influenced by the ITCZ,
tropical squall lines, and Trade Winds.
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2.2. Ground-Based Observations

The observation database includes data from conventional rain gauges (daily) and
automatic data collection platforms (PCDs) (hourly). This database belongs to the INPE and
was obtained from various sources, including the Regional Meteorology Centers, National
Water and Sanitation Agency (ANA), Department of Water and Electricity (DAEE), Paraná
Meteorological System (SIMEPAR), Natural Disaster Monitoring Networks operation (CE-
MADEN), Institute of the Environment and Water Resources (INEMA), Integrated Center
for Agrometeorological Information (CIIAGRO), and Company of Agricultural Research
and Rural Extension of Santa Catarina (EPAGRI). For this study, hourly frequency data were
aggregated into 24-h intervals, as recommended by the World Meteorological Organization.
This corresponds to the period from 12Z of the previous day to 12Z of the current day.

The observed data used in this study underwent INPE’s operational quality control
system, which consists of two stages, as described in Rozante et al. (2018) [48]. The first
stage involves real-time verification at the data storage point, including checks for validity,
internal and spatial consistency, and temporal and climatological control. Validity checks
ensure data fall within acceptable tolerance ranges, while internal consistency checks verify
the relationships between variables at a single station. Spatial consistency is assessed by
comparing data across stations within a specified radius, and temporal control evaluates
changes in data over time. After this objective analysis, data are classified with quality
descriptors such as “suspect” or “correct”. In the subjective stage, a meteorologist conducts
a detailed review of flagged data to determine their final validity, enabling a nuanced
quality assessment.

The observations were organized into grid points of 0.1◦ × 0.1◦ to match the spatial
resolution of IMERG products. The evaluation was restricted to grid points that contained
at least one rain gauge. In cases where a grid point contained multiple rain gauges, the
average value was used for analysis. Figure 2 shows the result of this procedure, allowing
for the simultaneous analysis of the spatial distribution of rain gauges and the number of
measurements taken over the study period in Brazil. A higher density of observations and
a greater number of records are observed in the Southern, Southeastern, and Northeastern
regions of the country. These areas show a high concentration of points, indicating denser
rain gauge monitoring. As one moves towards the interior of the country, a reduction in
both the density and the number of measurements is noted. This decrease can be attributed
to various factors, including a lower monitoring infrastructure in these regions and potential
logistical challenges. The distribution pattern presented in the figure reflects the spatial
variation in rain gauge coverage across Brazil, highlighting the need for the expansion
and better distribution of the monitoring network to achieve a more homogeneous and
representative coverage throughout the entire country.

Figure 3 shows the temporal evolution of the number of grid points with rain gauges
throughout the entire study period. In general, all regions, except R3, indicate an increase
in the number of grid points with observations over the years. This partial behavior is
more evident from 2014 onwards due to the installation of automatic data collection plat-
forms. Starting in 2020, a decrease in the number of grid points is observed in regions R2,
R3, and R4. This decline may be associated with various factors, such as (a) disruptions
in data collection systems, (b) changes in the observation network, (c) the impact of the
COVID-19 pandemic (where many field measurements were not conducted and mainte-
nance of automatic stations was disrupted), or (d) even a combination of these factors.

2.3. IMERG Satellite Data

IMERG is an algorithm that combines data from the GPM satellite constellation to
estimate precipitation across most of the Earth’s surface. It provides a spatial resolution
of 0.1◦ (~10 km) and a temporal resolution of 30 min. The results of this algorithm are
available in three runs—Early (~4 h after observation time), Late (~14 h after observation
time), and Final (~3.5 months after observation time)—each designed to meet different
user needs (Tan et al., 2019). The Final run, post-real-time, utilizes the monthly rain gauge
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analysis from the Global Precipitation Climatology Center (GPCC) and ancillary data
from the European Centre for Medium-Range Weather Forecasts (ECMWF) for calibration.
The IMERG system has undergone five significant updates since its inception, reflecting
continuous advancements in satellite precipitation estimation technology. The first version,
IMERG V03, laid the foundation of the system, combining data from various satellites to
provide global precipitation estimates. Subsequent updates, culminating in IMERG V07
(released in July 2023), incorporated algorithm improvements, enhanced data accuracy,
and new information sources. In this study, the performances of the IMERG V06B [39] and
V07B [40] versions were evaluated, both of which can be found at https://disc.gsfc.nasa.
gov/datasets (accessed on 10 December 2024). IMERG data, recorded at 30 min intervals,
were aggregated into 24-h periods, using the same criteria as the observational data.

2.4. Statistical and Categorical Indices

To evaluate the performance of the SPPs, the Root Mean Square Error (RMSE) was
used. Although the RMSE (Table 1) is most commonly applied to continuous variables, such
as temperature, humidity, and atmospheric pressure, it can also be useful for identifying
and quantifying errors in discrete variables such as precipitation. Additionally, other
categorical indices, which are more commonly used in precipitation evaluation studies,
were employed. Among these indices, this study utilized the Probability of Detection
(POD), False Alarm Ratio (FAR), Relative Bias (BIAS), and Critical Success Index (CSI).
All the values of these categorical indices are obtained from a contingency table (Table 2),
and their equations and optimal values are summarized in Table 3. These indices were
calculated and analyzed for eight precipitation thresholds (0.5, 2.0, 5.0, 10.0, 15.0, 20.0,
35.0, and 50.0 mm). For further analysis, these thresholds were consolidated into broader
categories—no rain/rain, light, moderate, and heavy rain—as shown in Table 4.
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Table 1. Statistical index.

Statistical Index Equation Optimum Value

Root Mean Square Error RMSE =

√
∑N

i=1(Pi−Oi)
2

N 0
P—precipitation products (IMERG V06B or V07B); O—observational data; i—grid points with rain gauges;
N—number of grid points with rain gauges.

Table 2. Contingency table.

Rain (Gauge) No Rain (Gauge) Total

Rain (Precipitation products) a = H b P = (a + b)

No rain (Precipitation products) c d (c + d)

Total O = (a + c) (b + d) N = (a + b + c + d)
a—hit; (H)—an event estimated to occur, and it did occur; b—false alarm—an event estimated to occur, but it did
not occur; c—miss—an event estimated not to occur, but it did occur; d—correct negative—an event estimated
not to occur and it did not occur; H—number of hits; P—number of precipitation products; O—number of
observations; N—total number.

To facilitate the interpretation of the results, Roebber’s performance diagram [49] was
employed. This diagram allows for the exploration of the geometric relationship among
four performance metrics in dichotomous forecasts: POD, FAR, BIAS, and CSI. The best
performances are indicated by indices approaching 1, with a perfect performance located
in the upper right corner of the diagram. In the chart, BIAS is represented by dashed
lines, where BIAS > 1 indicates overestimations, and BIAS < 1 indicates underestimations.
Another index analyzed was the adjusted equitable threat score (ETSa) (Table 3). The
ETSa [50] is a modified version of the equitable threat score (ETS), designed to mitigate the
impact of BIAS, thereby enabling a more equitable comparison between different models or
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versions of the same model. This adjustment ensures that the final score is not influenced
by BIAS, leading to a more accurate evaluation of the model’s true predictive capability,
independent of any systematic tendencies.

Table 3. Categorical indices used.

Categorical Indices Equation Optimum Value

Adjusted equitable threat
score (Mesinger 2008)

ETSa =

(
Ha− O2

N

)
(

P+O+Ha− O2
N

)
where;

Ha = O
(

1 −
(

O−H
O

) O
P
) 1

Probability of Detection POD = H
O 1

False Alarm Ratio FAR = P−H
P 0

BIAS Bias = P
O 1

Table 4. Rain classification and thresholds.

Rain Intensity
Classification

Precipitation Thresholds
(mm)

Rain/no rain 0.5

Light 2.0; 5.0

Moderate 10.0; 20.0

Heavy 35.0; 50.0

3. Results

The results of this study are initially presented through a comparison between the
IMERG V06B and V07B versions over South America and the adjacent oceans, followed
by an in-depth assessment of these versions specifically over Brazil. This assessment
encompasses both spatial and temporal errors, as well as categorical evaluations across the
five previously mentioned regions.

3.1. Comparison of IMERG V06B and V07B over South America

Figure 4 shows the spatial distribution of the seasonal accumulated precipitation average
over the entire study period for the V06B (Figure 4a–d) and V07B (Figure 4e–h) versions, along
with their differences (Figure 4i–l). This figure indicates that in both versions the positioning
of the main precipitating systems, such as the SACZ, ITCZ, and MCS, is consistent when
compared with climatological studies based on observations, such as those conducted by
Ferreira et al. (2023) and Córdoba et al. (2022) [49,50]. However, a notable exception is
observed during the winter months (Figure 4c,g,k) over the eastern region of Northeast
Brazil. In this area, precipitation during these months is linked to warm-top clouds formed
by easterly waves. In such cases, satellites are often unable to fully detect rain, as the
temperature surpasses infrared detection thresholds and the limited ice content in the
atmosphere hinders passive microwave sensor detection. Consequently, satellite products
only partially capture precipitation [51].

By analyzing the differences between the versions (Figure 4i–l), it can be observed that
the most significant discrepancies generally occur in regions with high rainfall rates, such as
the equatorial zone over the Atlantic and Pacific Oceans, and areas with a low observation
density, including the Northern region of Brazil. Over the continent, the differences are
smaller, likely due to the correction of the final IMERG products using rain gauge data.
Notably, with the exception of the equatorial belt and some areas of the Atlantic, version
V06 generally provides higher precipitation estimates compared to version V07, a pattern
also identified in similar studies by Wang et al. (2023) [46]. In the eastern portion of
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Northeast Brazil (Figure 4k), where precipitation estimates have the greatest uncertainties,
version V07 slightly reduces the magnitude of precipitation during the winter months,
which may suggest an even greater underestimation of precipitation rates in this region.
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The temporal evolution of the spatial mean of accumulated seasonal precipitation,
along with the trend lines for versions V06B and V07B, is shown in Figure 5. When analyz-
ing the average over the entire domain (Figure 5a), version V06B consistently displays more
intense precipitation, with an average difference of 14 mm, particularly during the summer
and autumn seasons. Additionally, version V06B demonstrates a slight downward trend in
precipitation over the years, a pattern not observed in version V07B. From the winter of
2014 onward, the discrepancies between the two versions diminish significantly. Over the
continent (Figure 5b), the differences between the versions are markedly smaller, averaging
approximately 7 mm. This reduction in discrepancies is likely due to the integration of rain
gauge data in the final product. The trend lines for the continent reveal a slight decrease
in precipitation over the period for both versions. The largest differences are found over
the oceans (Figure 5c), where they average 20 mm and occasionally exceed 50 mm during
the autumn seasons. The trend line indicates a decrease in precipitation over the years
exclusively in version V06B.
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Figure 5. Temporal evolution of the spatially averaged accumulated seasonal precipitation, calcu-
lated for the entire domain (a), continent (b), and oceans (c), along with trend lines for the V06B and 
V07B versions.

3.2. Assessment of the Performance of IMERG V06B and V07B Versions over Brazil

The spatial distributions of the seasonal precipitation RMSE for versions V06B and 
V07B, along with their differences, are shown in Figure 6. During summer (Figure 6a–c), 
a season characterized by the highest precipitation rates over Brazil (Figure 4a,e), the larg-
est RMSE values (exceeding 13 mm/day) are observed, particularly in regions influenced 
by the South Atlantic Convergence Zone (SACZ). This pattern is evident in both versions 
(Figure 6a,b). The differences between the products (Figure 6c) reveal a significant im-
provement in version V07B compared to V06B, with RMSE reductions of up to 2 mm/day 
across various parts of the country, especially in the Southeast and parts of the North.
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Figure 5. Temporal evolution of the spatially averaged accumulated seasonal precipitation, calculated
for the entire domain (a), continent (b), and oceans (c), along with trend lines for the V06B and
V07B versions.

3.2. Assessment of the Performance of IMERG V06B and V07B Versions over Brazil

The spatial distributions of the seasonal precipitation RMSE for versions V06B and
V07B, along with their differences, are shown in Figure 6. During summer (Figure 6a–c),
a season characterized by the highest precipitation rates over Brazil (Figure 4a,e), the largest
RMSE values (exceeding 13 mm/day) are observed, particularly in regions influenced by
the South Atlantic Convergence Zone (SACZ). This pattern is evident in both versions
(Figure 6a,b). The differences between the products (Figure 6c) reveal a significant improve-
ment in version V07B compared to V06B, with RMSE reductions of up to 2 mm/day across
various parts of the country, especially in the Southeast and parts of the North.

In autumn (Figure 6d–f), a reduction in RMSE magnitude is observed compared to the
summer months, reflecting the decrease in rainfall volume in the Southern and Southeastern
regions of Brazil. Similar to summer, the differences between the versions (Figure 6f) reveal
a reduction in the RMSE in version V07B. During winter (Figure 6g–i), both versions exhibit
the lowest RMSE values across Brazil, except in the eastern strip of the Northeast and the
far Northern regions, where RMSE values can exceed 14 mm/day. In the eastern Northeast,
satellite-based precipitation products (SPPs) tend to underestimate rainfall associated with
warm-top clouds, whereas in the Northern regions they tend to overestimate precipitation
linked to cold-top clouds. This behavior has been documented in several studies [33,48,52].
During this season, version V07B also demonstrates improvements over V06B.
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During spring (Figure 6j–l), as rainfall activity resumes across the country, particularly
in the Southern and Northern regions, RMSE values increase in these areas for both
versions, with the lowest errors observed in version V07B. Overall, both versions exhibit
similar spatial patterns of error distribution; however, version V07B demonstrates notable
improvements over V06B across all seasons in Brazil. High RMSE values are primarily
associated with overestimations caused by cold-top cloud precipitating systems, which
are widespread across much of Brazil, and underestimations related to warm-top clouds,
which are typically observed in the eastern portion of the Northeast, particularly during
the winter months.

3.3. Region R1

The temporal evolution of the seasonal precipitation RMSE for the IMERG V06B
and V07B versions across Brazil’s five regions is illustrated in Figure 7. In the R1 region
(Figure 7a), RMSE values remain relatively stable over time, with version V07B consis-
tently outperforming V06B. Although some fluctuations are observed, the RMSE generally
stays below 12 mm/day in both versions, with V07B frequently achieving reductions of
1-to-2 mm/day. According to the performance diagram (Figure 8), both versions tend
to overestimate precipitation in approximately 30% of events for the no-rain/light rain
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categories. For moderate rain, the BIAS is nearly perfect (BIAS = 1), a pattern consis-
tent across all seasons. Overestimations are also observed for heavy rainfall thresholds,
particularly during winter, where up to 46% of events are affected. The most significant
differences between the V06B and V07B versions occur during intense rainfall events, with
V07B showing discrete improvements in performance indices, particularly in the Critical
Success Index (CSI) and False Alarm Ratio (FAR). These findings are further supported
by the adjusted equitable threat score (ETSa) analysis (Figure 9), which shows that V07B
consistently outperforms V06B across all seasons and precipitation thresholds, with more
pronounced gains for intense rainfall events.
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3.4. Region R2

In the R2 region (Figure 7b), greater seasonal variability is observed, with RMSE
peaks occurring regularly, particularly during the summer months. The V07B version
generally reduces the RMSE, especially during peak periods, with reductions of up to
1.0 mm/day compared to V06B. However, the high RMSE values during these periods
suggest challenges in accurately estimating precipitation in this region, likely due to com-
plex meteorological phenomena. According to the performance diagram (Figure 10), both
versions display overestimations for the rain/no-rain threshold and light rainfall during
summer (Figure 10a), autumn (Figure 10b), and spring (Figure 10d). These overestimations
can reach up to 46% of total events at the 0.5 mm threshold (Figure 7d). For moderate-to-
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heavy rainfall, the BIAS approaches 1, indicating more accurate predictions. However, at
higher rainfall thresholds, the V07B version consistently underestimates across all seasons,
with the highest frequency of underestimations occurring in summer (Figure 7a), where
approximately 35% of events are underestimated at the 50.0 mm threshold. During sum-
mer (Figure 10a) and autumn (Figure 10b), the performance of both versions is similar
for thresholds ranging from 0.5 to 20 mm. Nevertheless, for thresholds exceeding this
range, the V07B version shows improvements in terms of the False Alarm Ratio (FAR) and
Critical Success Index (CSI) compared to V06B. Regarding the adjusted equitable threat
score (ETSa), for rain thresholds from 0.5 to 20.0 mm, the V07B performance is slightly
higher during summer (Figure 11a), autumn (Figure 11b), and spring (Figure 11d), with
more evident improvements for thresholds above this range. In winter (Figure 11c), these
improvements are already noticeable for moderate-to-heavy rainfall.
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region R1.

3.5. Region R3

In the R3 region (Figure 7c), the differences between V06B and V07B are subtle, with
V06B presenting slightly higher RMSE values (not exceeding 1.0 mm/day) during the
summer months. From the performance diagram (Figure 12), it is evident that in summer
(Figure 12a), autumn (Figure 12b), and spring (Figure 12d) both versions exhibit comparable
behavior across rain/no-rain, light rain, and moderate rain categories. Notably, for the
0.5 mm threshold during summer V06B overestimates precipitation in approximately 90%
of events. For amounts exceeding 35 mm, a slight underestimation is observed, except
in autumn, where the BIAS approaches 1. In winter (Figure 12c), V07B demonstrates a
poorer performance relative to V06B, with substantial underestimation, particularly for the
50.0 mm threshold, affecting nearly 65% of events. Although V06B exhibits a BIAS closer to
1, its CSI and POD values remain relatively low, accompanied by a high FAR, indicating
that despite the balanced BIAS, V06B’s hit rate is limited. The adjusted equitable threat
score (ETSa) analysis (Figure 13) reveals that during summer (Figure 13a) and autumn
(Figure 13b) both versions perform similarly across most thresholds, except for intense
rainfall, where V07B demonstrates a slight superiority. The most pronounced differences
occur during winter (Figure 13c), where V07B generally outperforms V06B, particularly
for thresholds between 10 mm and 20 mm, where ETSa peaks. In both winter and spring
(Figure 13d) V07B provides better estimates for intense rainfall events.
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Figure 12. Performance diagram comparing versions V06B (blue circle) and V07B (orange triangle)
in region R3 for the summer (a), autumn (b), winter (c), and spring (d) seasons. The symbols with
increasing sizes shown in the figure indicate the precipitation thresholds.
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In the eastern region of Northeast Brazil (Region R4), the RMSE values (Figure 7d) 
indicate higher errors for version V06B, particularly during the winter months, with val-
ues reaching approximately 2.0 mm/day in the years 2002, 2006, and 2010. The perfor-
mance diagram (Figure 14) highlights underestimation as the predominant characteristic 
across all seasons and precipitation thresholds, except for light rain thresholds during 
summer and autumn (Figure 14a,b). Specifically, for the 0.5 mm threshold in summer ver-
sion V06B overestimates nearly 43% of the events. In winter and spring (Figure 14c,d), 
underestimations become more pronounced, affecting all precipitation thresholds. Nota-
bly, in winter (Figure 14c) both versions exhibit significant underestimation, with the ma-
jority of cases reaching 60% and peaking at nearly 72% of events for the 5.0 mm threshold 
in version V07B. During these seasons, version V07B shows more pronounced underesti-
mations than V06B and registers a lower Probability of Detection (POD). However, de-
spite the lower POD, version V07B demonstrates higher Critical Success Index (CSI) val-
ues. An analysis of the adjusted equitable threat score (ETSa) (Figure 15), which accounts 
for bias, reveals more satisfactory results for version V07B, particularly during winter 
(Figure 15c) and spring (Figure 15d).

Figure 13. Adjusted equitable threat score for precipitation estimated by versions V06B (blue) and
V07B (orange) for the summer (a), autumn (b), winter (c), and spring (d) months, calculated for
region R3.

3.6. Region R4

In the eastern region of Northeast Brazil (Region R4), the RMSE values (Figure 7d)
indicate higher errors for version V06B, particularly during the winter months, with values
reaching approximately 2.0 mm/day in the years 2002, 2006, and 2010. The performance
diagram (Figure 14) highlights underestimation as the predominant characteristic across
all seasons and precipitation thresholds, except for light rain thresholds during summer
and autumn (Figure 14a,b). Specifically, for the 0.5 mm threshold in summer version V06B
overestimates nearly 43% of the events. In winter and spring (Figure 14c,d), underestima-
tions become more pronounced, affecting all precipitation thresholds. Notably, in winter
(Figure 14c) both versions exhibit significant underestimation, with the majority of cases
reaching 60% and peaking at nearly 72% of events for the 5.0 mm threshold in version
V07B. During these seasons, version V07B shows more pronounced underestimations than
V06B and registers a lower Probability of Detection (POD). However, despite the lower
POD, version V07B demonstrates higher Critical Success Index (CSI) values. An analysis of
the adjusted equitable threat score (ETSa) (Figure 15), which accounts for bias, reveals more
satisfactory results for version V07B, particularly during winter (Figure 15c) and spring
(Figure 15d).
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Figure 14. Performance diagram comparing versions V06B (blue circle) and V07B (orange triangle) 
in region R4 for the summer (a), autumn (b), winter (c), and spring (d) seasons. The symbols with 
increasing sizes shown in the figure indicate the precipitation thresholds.

Figure 14. Performance diagram comparing versions V06B (blue circle) and V07B (orange triangle)
in region R4 for the summer (a), autumn (b), winter (c), and spring (d) seasons. The symbols with
increasing sizes shown in the figure indicate the precipitation thresholds.

3.7. Region R5

Region R5 (Figure 7e) exhibits the highest variability in RMSE values, with both
versions showing pronounced peaks, particularly in recent years. During the autumn
months, both versions record the largest errors, reaching up to 18.0 mm/day in 2019.
However, these errors decrease substantially during the spring. On average, the RMSE
values for version V06B are approximately 0.5 mm/day higher than those for version V07B.
The performance diagram (Figure 16) reveals that both no-rain/rain categories and light
rain events are strongly overestimated in both versions, while heavy rainfall tends to be
underestimated, albeit to a lesser degree. This pattern is consistent across all four seasons.
Specifically, for the 0.5 mm threshold in spring both versions overestimate approximately
80% of the events. Conversely, the most significant underestimations occur at the 50.0 mm
threshold in version V07B during spring, affecting nearly 60% of the events. The most
notable differences between the versions are observed for heavy rainfall, particularly in
summer (Figure 16a) and spring (Figure 16d). This behavior is further supported by the
ETSa results (Figure 17), which show that the performance of version V07B aligns closely
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with V06B for no-rain/rain categories, as well as for light and moderate rainfall. However,
for heavy rainfall version V07B delivers more satisfactory results.
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increasing sizes shown in the figure indicate the precipitation thresholds.
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Consistent with studies conducted in China [53], both versions of IMERG demon-
strate a robust ability to capture major precipitation systems. In this study, these systems 
include the South Atlantic Convergence Zone (SACZ), the Intertropical Convergence 
Zone (ITCZ), and the mesoscale convective system (MCS), underscoring IMERG’s effec-
tiveness in detecting primary precipitation sources at a regional scale. However, this ef-
fectiveness is limited in certain areas, such as the eastern region of Northeast Brazil, where 
detecting precipitation associated with warm-top clouds during winter remains challeng-
ing [48,54]. In this region, both versions, V06B and V07B, encounter difficulties due to the 
nature of warm-top clouds, which often exceed infrared thresholds and contain lower 
concentrations of suspended ice, reducing the sensitivity of passive microwave sensors 
[55,56]. As a result, satellite-based precipitation estimates frequently underestimate rain-
fall, representing a significant limitation for data accuracy in this area. Notably, the V07B 
version exhibits a slight reduction in estimated precipitation magnitude compared to 
V06B, potentially indicating an even greater underestimation and increasing uncertainties 
in data reliability for the region. To address these challenges, integrating multiple data 
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4. Discussion
4.1. Comparative Analysis of IMERG Versions V06B and V07B

Consistent with studies conducted in China [53], both versions of IMERG demon-
strate a robust ability to capture major precipitation systems. In this study, these systems
include the South Atlantic Convergence Zone (SACZ), the Intertropical Convergence Zone
(ITCZ), and the mesoscale convective system (MCS), underscoring IMERG’s effectiveness
in detecting primary precipitation sources at a regional scale. However, this effectiveness
is limited in certain areas, such as the eastern region of Northeast Brazil, where detecting
precipitation associated with warm-top clouds during winter remains challenging [48,54].
In this region, both versions, V06B and V07B, encounter difficulties due to the nature of
warm-top clouds, which often exceed infrared thresholds and contain lower concentrations
of suspended ice, reducing the sensitivity of passive microwave sensors [55,56]. As a result,
satellite-based precipitation estimates frequently underestimate rainfall, representing a
significant limitation for data accuracy in this area. Notably, the V07B version exhibits
a slight reduction in estimated precipitation magnitude compared to V06B, potentially
indicating an even greater underestimation and increasing uncertainties in data reliability
for the region. To address these challenges, integrating multiple data sources, such as
ground-based radar and rain gauges, can complement satellite observations and improve
accuracy. Further advancements in algorithmic models, including the incorporation of
parameters that account for warm-cloud characteristics, may enhance detection capabili-
ties. Additionally, applying advanced machine-learning techniques for pattern recognition
specific to warm-top cloud systems could improve estimations. Regional calibrations
using high-resolution local observational data, as well as the development of sensors with
increased sensitivity to subtle variations in cloud properties, offer promising pathways for
mitigating errors and enhancing precipitation detection in these complex environments.

The comparison between precipitation estimates from versions V06B and V07B reveals
that the most significant discrepancies occur in high-rainfall regions, such as the equatorial
belt and the Atlantic and Pacific Oceans. These differences are primarily attributed to the re-
duced precipitation volume in version V07B, which, according to preliminary assessments
by Huffman et al. [40], exhibits improved performance, particularly in areas with sparse or
no gauge data, with notable enhancements in oceanic regions. Over land, the differences
are less pronounced, likely due to the correction of precipitation estimates using the GPCC
dataset in version V06B. However, as noted by Huffman et al. [40], this adjustment was
not implemented in version V07B due to an unrealistic increase in precipitation observed
during winter months over the continent. Discrepancies between the versions diminish
from the winter of 2014 onward, indicating a convergence in more recent estimates, pos-
sibly resulting from algorithmic improvements or sensor recalibrations. Overall, version
V06B tends to provide higher precipitation estimates than version V07B, particularly dur-
ing the summer and fall seasons. These findings are consistent with those reported by
Wang et al. [46].

4.2. Performance of IMERG Versions V06B and V07B in Different Precipitation Regimes

The analysis of continuous and dichotomous statistical indices across the five regions
of Brazil reveals distinct performance patterns between the V06B and V07B versions of
IMERG. These differences are influenced by the regional and seasonal variability of precipi-
tation characteristics [57], as well as the methodological enhancements incorporated in the
V07B version [58]. Overall, V07B outperforms V06B, particularly in regions and periods
associated with intense rainfall, such as R1, R2, and R5. In these areas, V07B demonstrates
notable reductions in the RMSE and improvements in quantitative precipitation indices,
including ETSa, CSI, BIAS, FAR, and POD. These enhancements are primarily attributed to
V07B’s capacity to mitigate overestimations in precipitation estimates, especially in regions
dominated by cold-top cloud systems. A shared limitation of both versions is the ten-
dency to overestimate precipitation at rain/no-rain thresholds and for light rainfall across
all seasons.
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Despite being the latest and most advanced version, V07B does not consistently outper-
form V06B across all aspects or regions. For example, in region R3 the differences between
the two versions are less pronounced. In some cases, such as during the winter, V06B
demonstrates better performance in terms of BIAS, albeit with a lower hit rate. Conversely,
in region R4 V07B shows more pronounced underestimations, particularly during the win-
ter and spring, underscoring its limitations in addressing the specific climatic conditions of
this area. These underestimations are likely linked to the predominance of warm-cloud
precipitation systems in the region, which rely primarily on the coalescence process for
raindrop formation [59]. This process lacks the ice-phase dynamics typically detected by
satellite sensors. Moreover, the relatively warm cloud tops produce weaker thermal con-
trasts in infrared measurements and diminished signals at microwave frequencies, further
complicating the accurate detection and quantification of precipitation [60]. Nonetheless,
when the effect of BIAS is removed through the ETSa index, V07B demonstrates superior
performance in these regions.

5. Conclusions

In this study, precipitation estimates from the IMERG Final versions V07B and V06B
were compared over South America and the adjacent oceans, and evaluated against surface
observations under different precipitation regimes in Brazil across all four seasons. The
main conclusions of this study are as follows:

(1) Both IMERG versions effectively capture the seasonal precipitation patterns associated
with key precipitation systems active in South America, including the SACZ, ITCZ,
and MCS;

(2) The most significant discrepancies between the two versions are observed over oceanic
regions and continental areas lacking gauge data, with V06B consistently estimating
higher rainfall volumes than V07B. In contrast, these differences are less pronounced
over land;

(3) During the winter months in the eastern region of Northeast Brazil, where SPPs face
challenges in estimating precipitation associated with warm cloud tops, version V07B
tends to further underestimate precipitation volumes;

(4) Over the years, particularly over oceanic regions, V06B has shown a trend of decreas-
ing precipitation volume, a pattern not observed in V07B;

(5) In general, RMSE values for version V07B are lower than those for version V06B in all
analyzed regions;

(6) In regions R1, R2, and R5, both versions tend to overestimate the rain/no-rain and light
rainfall classes, while for moderate rainfall the BIAS approaches 1.0. Other dichotomous
indices, such as POD, FAR, and CSI, indicate a superior performance by V07B;

(7) Regions R3 (winter) and R4 (winter and spring) exhibited the most unfavorable results
for both versions, with extremely low POD and CSI values, high FAR indices, and pro-
nounced underestimation across all precipitation classes. In these regions and seasons,
version V07B performs worse than V06B, further intensifying the underestimations;

(8) From the perspective of ETSa, which eliminates the effect of BIAS, version V07B
demonstrated a superior performance to V06B in most situations, was equivalent in
some, but was never inferior.
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