

INCLUSÃO DO EFEITO RADIATIVO DE NUVENS CONVECTIVAS PROFUNDAS EM SIMULAÇÕES DO MODELO ETA

Diêgo de Andrade Campos Chou Sin Chan

10 de novembro 2021

Objetivos

 Entender a interação da radiação atmosférica com as nuvens convectivas profundas em modelos numéricos;

Compreender como o esquema de radiação trata a nuvem de origem convectiva e qual o impacto da inclusão do efeito radiativo de nuvens convectivas profundas na distribuição dos fluxos radiativos em diferentes escalas de tempo.

Específico:

Avaliar o modelo Eta utilizando o esquema de radiação RRTMG em condições de céu encoberto por nuvens;

Metodologia – O modelo Eta

CARACTERÍSTICAS	DESCRIÇÃO			
Coordenada vertical	Coordenada eta com refinamento de "Cut-Cell" (Mesinger et al. 2012)			
Grade horizontal	Grade-E (Arakawa). Com 20 km de resolução espacial.			
Grade vertical	Grade-Lorenz, primeiro nível em cerca de 20m. Com 38 níveis verticais e topo do modelo em 25 hPa.			
Esquema de superfície	4-Layer NOAH Land Surface Model (Ek et. al, 2003).			
Mapa de solo	15 tipos			
Mapa de vegetação	13 tipos			
Topografia original	USGS 90m			
Turbulência	Mellor-Yamada (1982) nível 2.5			
Camada limite superficial	Monin-Obukov, utilizando funções de estabilidade de Paulson (1970)			
Microfísica de nuvens	Ferrier et. al, 2002			
Convecção cumulus	Betts-Miller (1986) e Janjic (1994) + <u>"KF" (Koh e Fonseca, 2016)</u>			
Variáveis Prognósticas	T, q, u, v, ps, TKE, e hidrometeoros das nuvens			
Radiação atmosférica	<u>RRTMG - SW e LW calculados a cada hora</u> (Mlawer et al., 2012; Campos et al., 2017)			
Condicões de contorno	Era-Interim (Berrisford et al. 2011)			

Metodologia – Esquema "KF"

Esquema de condensados convectivos – Koh e Fonseca (2016)

 Estima os condensados de nuvens a partir de esquemas de ajuste convectivo como o BMJ;

 Esquema diagnóstico que basicamente usa o topo e a base da nuvem convectiva e a precipitação convectiva que atinge a superfície;

 Premissas: a fração da nuvem convectiva do modelo é parametrizada em função da precipitação gerada pelo esquema de convecção. O perfil vertical da fração da nuvem convectiva é dado por uma distribuição Poisson com maior peso no topo da distribuição.

Simulações numéricas

Etapa 1 - Desenvolvimento do modelo.

Simulações curtas para o mês de intensa atividade convectiva de janeiro de 2008.

Etapa 2 - Simulação contínua de 10 anos.

Verificar o desempenho da simulação do EtaR-CMX em reproduzir a variabilidade sazonal entre as estações do ano e avaliar o impacto da inclusão do efeito radiativo de nuvens convectivas profundas nas variáveis meteorológicas em longo prazo.

Simulação do período presente de 1980-1989

(EtaR-CMX)

Fluxo de radiação de onda curta incidente à superfície (W/m²)

Janeiro de 2008

Bias do fluxo de radiação de onda curta incidente à superfície (W/m²)

Janeiro de 2008

(Eta – CMSAF)

Radiação de onda curta incidente à superfície (W/m²)							
	EtaR	EtaR-C	EtaR-CM	EtaR-CMX			
BIAS	26,35	29,09	14,34	11,07			
MAE	65,47	65,65	65,72	65,29			
RMSE	97,84	98,08	97,46	98,83			
SCORR*	0,720	0,719	0,715	0,749			
TCORR**	0,996	0,996	0,995	0,998			

Precipitação total (mm/dia)

	EtaR	EtaR-C	EtaR-CM	EtaR-CMX
BIAS	-0,37	-0.30	-0,38	-0,41
MAE	4,93	5.09	5,00	5,10
RMSE	14,74	15,21	14,79	15,30
SCORR*	0,186	0,170	0,165	0,163
TCORR**	0,663	0,658	0,547	0,309

Temperatura à 2 metros (°C)

	EtaR	EtaR-C	EtaR-CM	EtaR-CMX
BIAS	-0,380	-0,325	-0,424	-0,017
MAE	1.323	1.354	1.297	1,118
RMSE	1.818	1.868	1,777	1,704
SCORR*	0,937	0,936	0,940	0,941
TCORR**	0,974	0,974	0,975	0,970

Erros estatísticos

Média mensal No domínio (Janeiro de 2008)

* correlação espacial

** correlação de tempo

Fluxo de radiação de onda curta incidente à superfície (W/m²) - Média Sazonal (1980-1989)

Precipitação total (mm/dia) - Média Sazonal (1980-1989)

Conclusões

✓ <u>Etapa 1 – Janeiro 2008</u>

- EtaR-CMX reduziu os erros do fluxo de radiação de onda curta incidente à superfície, do saldo de radiação à superfície e da temperatura a 2 metros, quando comparado com os dados observados.
- Mais ajustes são necessários na interação entre os esquemas de convecção e microfísica em conjunto com a inclusão do efeito radiativo de nuvens cumulus profunda, para corrigir a subestimativa de precipitação, principalmente sobre o continente.

✓ Etapa 2 – 1980-1989

- EtaR-CMX, em geral, conseguiu reproduzir a variabilidade intrasazonal das variáveis meteorológicas no verão e inverno em comparação com a reanálise.
- Observa-se um aumento do bias no fluxo de radiação de onda curta, principalmente sobre o continente, entretanto, sem a inclusão do efeito radiativo de nuvens convectivas profundas esses erros poderiam ser amplificados.

Em geral, o trabalho mostra a importância da interação do esquema de radiação com a parametrização de convecção e microfísica, para uma representação mais realística dos processos radiativos em modelos numéricos.

Próximas Etapas

Diferentes esquemas de parametrização de convecção (Kain-Fritsch)

Efeito radiativo dos aerossóis

Projeções utilizando cenários de mudanças climáticas

OBRIGADO!!

diego.campos@inpe.br