

HISTORICO DE DESENVOLVIMENTO DO CCATT-BRAMS

Jairo Panetta
Workshop CCATT-BRAMS @ CPTEC
Janeiro 2012

Elebra BRAMS (1998 - 2001)

- IAG Elebra ASTER (Finep)
 - Parte de Programa Nacional em PAD, suportado pela FINEP
 - Elebra produziria hardware e software para Centros Regionais de Meteorologia
 - Alvo em hardware: clusters of PCs
 - Alvo em software: versão nacional do RAMS 4.0
 - Distribuição restrita pois RAMS proprietário
 - Elebra faliu
 - Por abertura de importações em equipamentos de telecomunicação

CPTEC BRAMS (2002 – 2003)

- IAG CPTEC ASTER (Finep)
 - Tentativa de manter o Programa Nacional em PAD da FINEP após falência da Elebra
 - CPTEC assume o papel da Elebra em software
 - Itautec assume o papel da Elebra em wardware
 - Sucesso!

PAD Finep

- Visa:
 - Criar indústria de hardware e software nacional em PAD:
 - Apoiando pesquisa universitária em PAD;
 - Transferindo resultados para a indústria
 - Incrementar o uso de PAD no país
- Primeiro foco: Centros Regionais de Previsão
 - Hw: Aglomerados de PCs
 - Sw: Programa previsor lider mundial de vendas

PAD Finep

- Situação atual:
 - Itautec vendeu 13 aglomerados de PCs em 2002
 - Primeira versão do software aplicativo no mercado
- Histórico:
 - 1995 hoje: suporta pesquisa universitária
 - 1998 hoje: transferência para a indústria
 - Tentativa mal sucedida USP/LSI para Elebra
 - Sucesso ao transferir USP/LSI para Itautec

PAD Finep

- Recursos em 2003:
 - Finep investiu R\$ 5M nas universidades
 - Itautec investiu R\$ 5M em 8 universidades

- Direções futuras:
 - Manter o curso em hardware
 - Aumentar o esforço em software
 - Ampliar o espectro de aplicações

Projeto BRAMS

- Aumenta a qualidade da previsão para os trópicos
 - Shallow Cumulus + SIB + Inicialização da umidade do solo + vegetação tropical
- Melhora a codificação
 - Implicit None + Modulos substituindo commons + Tipos + Reprodutibilidade binária restrita
- Otimização Sequencial e Paralela
 - Acelera a Difusão (para alguns RAMSIN)
- Versões de Pesquisa e de Produção
 - BRAMS 1.0 (sobre RAMS 5.0.2)
 - BRAMS 2.0 (sobre RAMS 5.0.4)
 - BRAMS 3.0

Instalações BRAMS

- CPTEC
- IAG/USP
- SIMEPAR
- LM/UFCG
- DM/UFRJ
- DGEO/FURG
- FUNCEME
- LNCC
- DCAO/UBA

BRAMS: Dificuldades em Sw

- Flexibilidade é central (devido à pesquisa)
- Requer manter múltiplos métodos no código
 - Usuário seleciona Convecção, Radiação, Microfísica, etc..
- Métodos selecionados no "namelist"
 - Em alguns casos, múltiplas escolhas no mesmo método
 - Número absurdo de combinações
- Resultados:
 - Código flexivel, mas...
 - Há combinações que não funcionam...(array bounds, initialização, inconsistencias)
 - Impossível otimizar e garantir reprodutibilidade
 - Reprodutibilidade refeita 4 vezes
 - Bugs continuam a ser descobertas diariamente...

BRAMS@CPTEC (2003-2004)

- Após BRAMS: (2003-2004)
 - CPTEC gera 2 versões (3.1, 3.2), com contínuo acompanhamento do RAMS
 - BRAMS 3.2 = RAMS 5.0.4
 - RAMS oficial: 4.4
 - RAMS beta: 6.0C
 - Suporte e Domínio Mantido
- BRAMS torna-se software livre
- CATT-BRAMS em operação no CPTEC
- Gestação do Projeto BRAMSNET

- Modelo ambiental do CPTEC
- CATT-BRAMS = BRAMS +
 - Modelo de difusão de poluentes
 - Radiação CARMA
 - DIspersão vertical da fonte, Deposição seca e húmida, etc ...
- Código teve que ser movido de Cluster de PCs para NEC SX-6
- Resultados:
 - Vetorização torna-se central
 - De 150 MFlops/Processador em 2004 para 600 MFlops/Processor em 2005
 - Eficiência paralela torna-se central
 - Paralelismo de memória central não é explorado
 - Balanceamento dinâmico de carga absolutamente necessário
 - Bugs são um pesadelo
 - SX-6 é muito restritivo durante a execução
 - Aumenta a complexidade do código devido à CATT

BRAMSNET (2005 - 2006)

- CPTEC IAG UFCG UFRJ FURG (Finep)
- Produção diária realimenta pesquisa e desenvolvimento
- BRAMS torna-se software livre
- Web site (<u>www.cptec.inpe.br/brams</u>) para distribuição de sw, documentação e lista de discussão
- Resulta:
 - Aumenta a pressão dos usuários por documentação, qualidade de software e eficiência
 - Larga disseminação

BRAMSNET: Objetivo

Estabelecer Rede Cooperativa de Usuários, Desenvolvedores e Mantenedores do BRAMS, para:

- Disseminar e homogeneizar seu uso;
- Incentivar seu desenvolvimento;
- Avançar sua pesquisa

CPTEC ITAUTEC CIRCUITO VIRTUOSO

DESENVOLVIMENTO

USP UFRJ UFCG FURG CPTEC

CPTEC SOMAR

USO

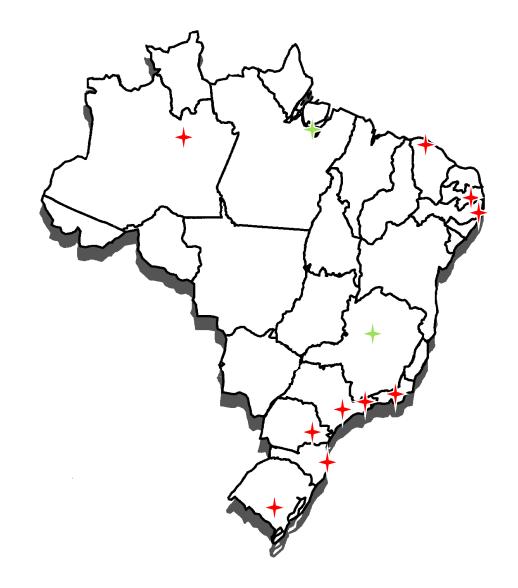
EPAGRI

SIMEPAR

FUNCEME

LAMEP

SIVAM



RESULTADO BRAMSNET (2005)

Circulo Virtuoso em Ação

- EPAGRI (SC) solicita otimização
 - Tempo de execução excessivo (5h 13')
- CPTEC realiza otimização específica para a grade do EPAGRI, envolvendo partição específica do domínio
 - Redução do tempo de execução em 20% (4h 9')
- CPTEC envia versão para testes no IAG e realiza partição específica para o domínio do IAG
- IAG obtém redução de 15% no tempo de execução
- Otimização inclusa no BRAMS 4.0

- CPTEC LAC/INPE UFRGS (Finep)
- 50 anos de climatologia sobre o Brasil
- 3 clusters distribuídos no Brasil, accessíveis por um portal
 - Execuções de um ano; re-start por "history"
 - 3 regiões do Brasil
 - 3 datas iniciais
- Projeto de Ciência da Computação, testa "middleware" de grids
- Resultado:
 - Reprodutibilidade binária e climatologia

SegHidro (2005-2006)

- UFCG CPTEC FUNCEME (Finep)
- Portal para a execução em grid de:
 - BRAMS
 - Modelos hidrológicos
 - Modelos de análise de risco
- Projeto de Ciência da Computação (em grids)
- Resultados:
 - Uso extensivo do BRAMS, assimilando CPTEC
 - Novas metodologias de grade

BRAMS@CPTEC (2006)

- Geração do BRAMS 4.0 (2006)
- BRAMS 4.0 = BRAMS 3.2 +
 - Qualidade de software (remoção de bugs + "namelist")
 - Eficiência sequancial e paralela (vetorização e melhor comunicação mestre-escravo)
 - CATT
 - TEB + SPM

BRAMS@CPTEC (2007)

- Aquisição do cluster UNA pelo CPTEC
 - 1100 cores (Opteron)

 Permitiu executar BRAMS 4.0 para alta resolução em grandes domínios geográficos

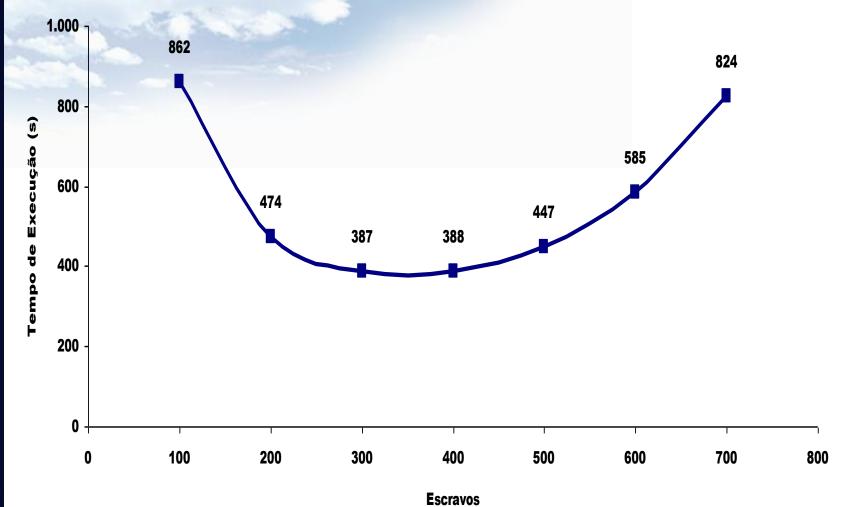
BRAMS@CPTEC (2007-2008)

- Trabalho na UNA mostrou o impacto de IA64 (Espaço de endereçamento de 64 bits)
 - Troca de mensagens MPI em C não funciona em algumas máquinas
 - Mecanismo original do RAMS 3.0
 - Um ano de trabalho para determinar e resolver o bug
 - Solução: re-escrever o módulo em Fortran

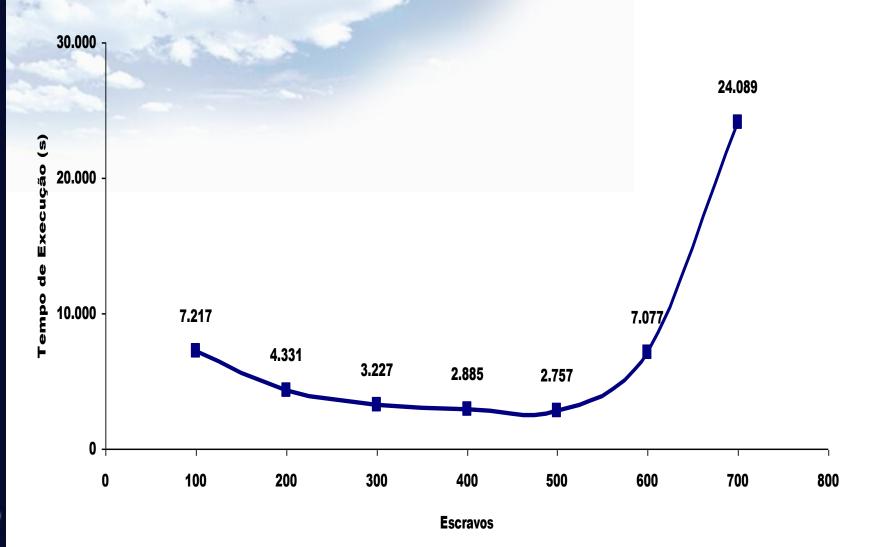
- Resulta BRAMS 4.2
 - Grande sucesso!

Site access

Atmosfera Massiva (2008-2010)


- UFRGS CPTEC LNCC (Finep)
- Projeto em Ciência da Computação
- Visa escalabilidade até 1000 processadores
- Permitiu demonstrar limites na escalabilidade do BRAMS 4.2 para milhar de processadores e alta resolução em grandes domínios geográficos
 - Limitações claras:
 - Uso excessivo de memória pelo mestre
 - Escalabilidade limitada pelo esquema mestre-escravo

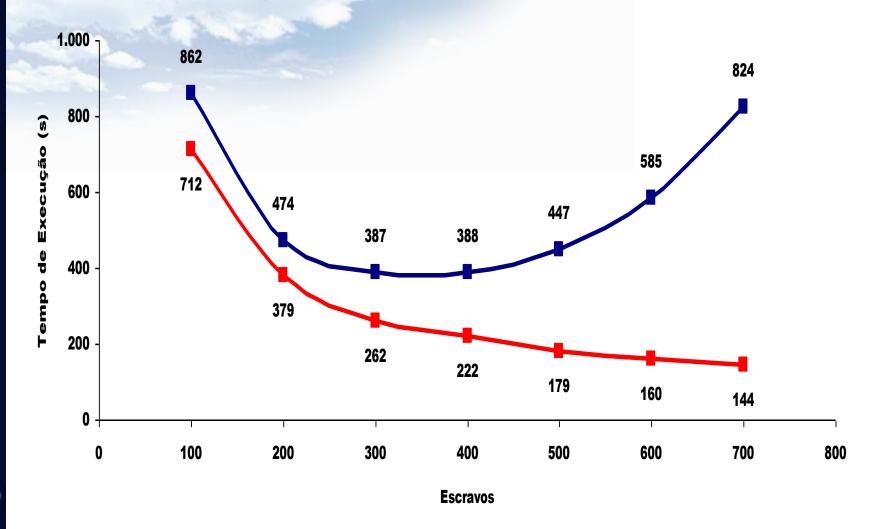
20Km, A.L. 1 Dia, BRAMS 4.2



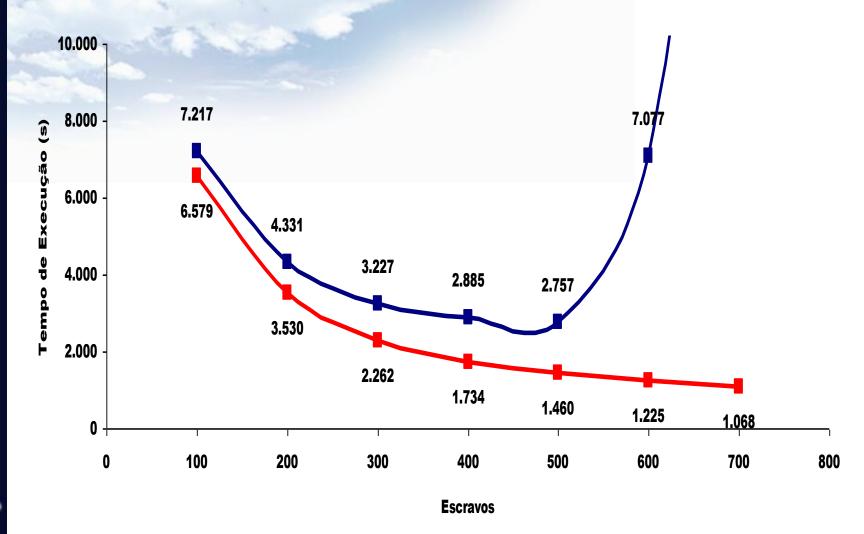
10Km, A.L. 1 Dia, BRAMS 4.2

Atmosfera Massiva (2008-2010)

Resultado: Protótipo do BRAMS 5.0


- BRAMS 5.0:
 - Elimina o mestre; todos computam
 - Reduz substancialmente o uso de memória
 - Aumento substancial de escalabilidade
 - Re-escrita da inicialização, I/O, CFL

20Km, A.L. 1 Dia, BRAMS 5.0 x 4.2


── BRAMS 4.2 **──** BRAMS 5.0

10Km, A.L. 1 Dia, BRAMS 5.0 x 4.2

── BRAMS 4.2 **──** BRAMS 5.0

CCATT (2007-2011)

- Inserção da Quimica Atmosférica
 - Em 2011, no BRAMS 4.3 !!!
 - Longo trabalho
 - Aumento substancial do código
 - Felizmente, código moderno

Sumário

- BRAMS: Décadas de contínuo desenvolvimento computacional
- Transformar protótipo acadêmico em software de produção é tarefa árdua
 - Missão impossível em alguns casos
- Software científico muda constantemente
 - Pois o hardware muda
 - Pois a tecnologia de desenvolvimento muda

