
UM perturbation sensitivity project

Dealing with rounding issues
Background
The UM perturbation sensitivity project is currently in the process of identifying coding issues that
lead to excessive perturbation growth in the model. Currently, all problems are emerging at IF
tests that contain comparisons between real numbers; for example IF (qCL(i) > 0.0 ) .... In
this test, qCL(i) is being used to represent one of two states; "no liquid cloud", or "some liquid
cloud". This is fine, but it is then important to ensure that rounding issues do not lead to
unintended changes of state prior to the test, such as slightly non-zero qCL(i) values when there is
supposed to be no liquid cloud. If such problems occur at discontinuous branches in the code, the
result is spurious perturbation growth.

This document collects together some typical examples of what can go wrong, and how to deal
with them. First, though, it is worth making a quick note of some of the characteristics of
floating-point arithmetic.

Floating-point identities and non-identities
In floating-point arithmetic many of the identities that hold in normal arithmetic no longer hold,
basically because of the limited precision available to represent real numbers. Thus, it is often
important that coders know which algebraic identities pass through to floating-point arithmetic and
which don't, and how results can be affected by the way the calculations are implemented by the
compiler. The following is based on what I have found through internet searches. However, I
haven't been able to track down any particularly good references for this, so please let me know if
you spot any errors. For chapter and verse on floating-point arithmetic, a good reference is David
Goldberg's article (http://docs.sun.com/source/806-3568/ncg_goldberg.html).

The following floating-point identity always holds:

  0.0 * x ≡ 0.0

The following also hold, but only if the numbers that go into the calculations have the same
precision:

  0.0 + x ≡ x
  1.0 * x ≡ x
    x / x ≡ 1.0
    x - x ≡ 0.0
    x - y ≡ x + (-y)
    x + y ≡ y + x
    x * y ≡ y * x
  2.0 * x ≡ x + x
  0.5 * x ≡ x / 2.0

For example, optimisation may lead to some variables being held in cache and others in main
memory, and these will generally store numbers with different levels of precision. Thus, coding

1



based on these identities will probably work as intended in most circumstances, but may be
vulnerable to higher levels of optimisation.

The following are non-identities:

  x + (y + z) !≡ (x + y) + z
  x * (y * z) !≡ (x * y) * z
  x * (y / z) !≡ (x * y) / z

These say that, unlike in normal arithmetic, the order of the calculations matters. Failure to
recognise this can cause problems, as in example 1 below. (Note that putting brackets around
calculations to try and impose the "correct" order of calculation will not necessarily work; the
compiler will decide for itself!)

Example 1: Non-distributive arithmetic
At UM vn7.4, the routine LSP_DEPOSITION contains the following calculation:

            ! Deposition removes some liquid water content
            ! First estimate of the liquid water removed is explicit
            dqil(i) = max (min ( dqi_dep(i)*area_mix(i)                 &
     &                /(area_mix(i)+area_ice_1(i)),                     &
     &                qcl(i)*area_mix(i)/cfliq(i)) ,0.0)
...
          If (l_seq) Then
            qcl(i) = qcl(i) - dqil(i)  ! Bergeron Findeisen acts first

Here, dqil is a change to cloud liquid water qcl, which is limited in the calculation to
qcl*area_mix/cfliq, where area_mix is the fraction of the gridbox with both liquid and ice
cloud, and cfliq is the fraction with liquid cloud. Basically, the change to cloud liquid water is
being limited by the amount of liquid cloud which overlaps with ice cloud it can deposit onto.

In the special case that all the liquid cloud coincides with ice cloud, we have area_mix = cfliq,
implying area_mix/cfliq = 1.0. In this case, the limit for dqil should be exactly qcl, but is
coded as qcl*area_mix/cfliq. In tests on the IBM, it seems that the compiler decides that the
multiplication should precede the division, so the outcome of the calculation is not necessarily
qcl. Thus, the update to qcl on the last line does not necessarily lead to qcl = 0.0 when the limit
is hit.

One solution to this problem is to supply area_mix/cfliq directly as a ratio:

        If (cfliq(i) /= 0.0) Then
          areamix_over_cfliq(i)=area_mix(i)/cfliq(i)
        End if
...
            ! Deposition removes some liquid water content
            ! First estimate of the liquid water removed is explicit
            dqil(i) = max (min ( dqi_dep(i)*area_mix(i)                 &
     &                /(area_mix(i)+area_ice_1(i)),                     &
     &                qcl(i)*areamix_over_cfliq(i)) ,0.0)

This is the solution we have adopted in the large-scale precipitation code.

Example 2: Changing units when applying limits
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At UM vn7.4, the routine LSP_TIDY contains the following calculation:

          ! Calculate transfer rate
          dpr(i) = temp7(i) / lfrcp ! Rate based on Tw excess

          ! Limit to the amount of snow available
          dpr(i) = min(dpr(i) , snow_agg(i)                             &
     &                        * dhi(i)*iterations*rhor(i) )
...
          ! Update values of snow and rain
          If (l_seq) Then
            snow_agg(i) = snow_agg(i) - dpr(i)*rho(i)*dhilsiterr(i)
            qrain(i)    = qrain(i)    + dpr(i)

where

dhilsiterr(i) = 1.0/(dhi(i)*iterations)
rhor(i)       = 1.0/rho(i)

Here, dpr is a conversion rate from snow into rain, and the second statement limits this rate to that
required to melt all of the snow within the timestep. Thus, the intention is that if this limit is hit the
final snow amount will come out to exactly 0.0. However, the outcome in this case is effectively as
follows:

  dpr(i)      = snow_agg(i) * dhi(i)*iterations*rhor(i)
  snow_agg(i) = snow_agg(i) - dpr(i)*rho(i)*dhilsiterr(i)
            ( = snow_agg(i) &
              - snow_agg(i) &
              * dhi(i)*iterations*rhor(i)*rho(i)*1.0/(dhi(i)*iterations) )

In normal arithmetic, the multiplier on the final line comes out to exactly one, but this is not
necessarily the case in floating-point arithmetic. Whether the expression comes out to exactly 1.0
or not will be highly sensitive to the values going into the calculation. If the result is slightly
different to 1.0, the outcome is likely to be a tiny but non-zero snow amount.

The basic problem here is that the limit comes from a particular quantity, but is being applied
indirectly via its rate of change. Thus when the limiting quantity is updated a change of units is
required. The solution here is to apply the limit to the quantity itself, shifting the change of units to
calculations involving rates:

          ! Calculate transfer
          dp(i) = rho(i)*dhilsiterr(i)*temp7(i) / lfrcp

          ! Limit to the amount of snow available
          dp(i) = min(dp(i), snow_agg(i))
...
          ! Update values of snow and rain
          If (l_seq) Then
            snow_agg(i) = snow_agg(i) - dp(i)
            qrain(i)    = qrain(i)    + dp(i)*dhi(i)*iterations*rhor(i)

Example 3: Dealing with special cases
At UM vn7.4, the routine LS_CLD contains the following calculation to update the total cloud
fraction CF given the liquid and frozen cloud fractions CFL and CFF:

            TEMP0=OVERLAP_RANDOM
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            TEMP1=0.5*(OVERLAP_MAX-OVERLAP_MIN)
            TEMP2=0.5*(OVERLAP_MAX+OVERLAP_MIN)-OVERLAP_RANDOM
            CF(I,J,K)=CFL(I,J,K)+CFF(I,J,K)                             &
     &              -(TEMP0+TEMP1*OVERLAP_ICE_LIQUID                    &
     &              +TEMP2*OVERLAP_ICE_LIQUID*OVERLAP_ICE_LIQUID)
! Check that the overlap wasnt negative
            CF(I,J,K)=MIN(CF(I,J,K),CFL(I,J,K)+CFF(I,J,K))

During testing, it was observed that CF was often coming out to 0.9999999999999....; i.e., almost
but not quite 1.0, and that whether this occured was highly sensitive to the input data. This
sensitivity was then being passed down to branches testing on, for example, whether CF was equal
to CFF.

If the above calculations are followed through algebraically, it can be shown that if CFL+CFF ≥ 1,
then CF must be exactly one. In the floating-point case, however, this no longer follows, so we
often get cases where there is a slight deviation from unity. The simplest solution in this example
is to deal with the special case separately:

            TEMP0=OVERLAP_RANDOM
            TEMP1=0.5*(OVERLAP_MAX-OVERLAP_MIN)
            TEMP2=0.5*(OVERLAP_MAX+OVERLAP_MIN)-OVERLAP_RANDOM
! CFF + CFL >= 1 implies CF = 1
            IF (CFL(I,J,K)+CFF(I,J,K) >= 1.0) THEN
              CF(I,J,K) = 1.0
            ELSE
              CF(I,J,K)=CFL(I,J,K)+CFF(I,J,K)                             &
     &                -(TEMP0+TEMP1*OVERLAP_ICE_LIQUID                    &
     &                +TEMP2*OVERLAP_ICE_LIQUID*OVERLAP_ICE_LIQUID)
! Check that the overlap wasnt negative
              CF(I,J,K)=MIN(CF(I,J,K),CFL(I,J,K)+CFF(I,J,K))
            END IF
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