
Page 1 of 14

Fortran coding standards for

new JULES code

Written by Matt Pryor

Last updated 08 June 2010

Table of contents

1 Introduction..2

1.1 Why have standards? ...2

1.2 Units...2

2 Guidelines for Fortran code ...3

2.1 Layout and formatting..3

2.2 Style ...5

2.3 Fortran features ..8

2.4 Floating-point arithmetic ...11

2.4.1 Comparing real numbers..11

2.4.2 Non-distributive arithmetic..13

2.5 Further code guidance and best practices ..13

3 Standard code templates ..14

3.1 Code templates...14

3.2 Copyright notice...14

Page 2 of 14

1 Introduction
This document specifies the software standards and coding styles to be used when

writing new code files for JULES. When making extensive changes to an existing file,

a rewrite should be done to ensure that the routine meets the JULES standard and

style.

1.1 Why have standards?

This document is intended for new as well as experienced programmers, so a few

words about why there is a need for software standards and styles may be in order.

Coding standards specify a standard working practice for a project with the aim of

both reducing portability and maintainability problems and improving the readability

of code. This process makes code development and reviewing easier for all

developers involved in the project. Remember that software should be written for

people and not just for computers! As long as the syntax rules of the programming

language (e.g. Fortran 90) are followed, the computer does not care how the code is

written. You could use archaic language structures, add no comments, leave no spaces

etc. However, another programmer trying to use, maintain or alter the code will have

trouble working out what the code does and how it does it. A little extra effort whilst

writing the code can greatly simplify the task of this other programmer (which might

be the original author a year or so after writing the code, when details of it are bound

to have been forgotten). In addition, following these standards may well help you to

write better, more efficient, programs containing fewer bugs.

1.2 Units

All routines and documentation must be written using SI units. Standard SI prefixes

may be used. Where relevant, the units used must be clearly stated in both code and

documentation.

Page 3 of 14

2 Guidelines for Fortran code
These are guidelines you should adhere to when you are developing new code for

inclusion in the official release of JULES. If you are modifying existing code, you

should adhere to its existing standard and style where possible. If you want to change

its standard and style, you should seek prior agreement with the JULES office. Where

possible, you should try to maintain the same layout and style within a source file.

When reading these guidelines, it is assumed that you already have a good

understanding of modern Fortran terminology. It is understood that these guidelines

may not cover every aspect of your work. In such cases, use common sense and

always bear in mind that other people may have to maintain the code in the future.

Always test your code before releasing it. Do not ignore compiler warnings, as they

may point you to potential problems.

Some standard templates are given in Section 3.1 of this document.

2.1 Layout and formatting

The following is a list of recommended practices for layout and formatting when you

write code in Fortran.

• Use the Fortran 90 free format syntax.

• Indent blocks by 2 characters. Where possible, comments should be indented

with the code within a block.

• Use space and blank lines where appropriate to format your code to improve

readability (use genuine spaces rather than tabs, as the tab character is not in

the Fortran character set). For example:

Common practice

DO i=1,n

 a(i)%c=10*i/n

ENDDO

IF(this==that)THEN

 distance=0

 time=0

ENDIF

Better approach

DO i = 1, n

 a(i)%c = 10 * i / n

END DO

IF (this == that) THEN

 distance = 0

 time = 0

END IF

Page 4 of 14

• Try to confine your line width to 80 characters. This means that your code can

be viewed easily in any editor on any screen, and can be printed easily on A4

paper.

• Line up your statements, where appropriate, to improve readability. For

example:

Common practice

REAL, INTENT(IN) :: my_in(:)

REAL, INTENT(INOUT) :: my_inout(:)

REAL, INTENT(OUT) :: my_out(:)

! ...

CHARACTER(LEN=256) :: my_char

! ...

my_char = 'This is a very very very very very very ' // &

 'very very very very very very very very very very ' // &

 'long character assignment'

Better approach

REAL, INTENT(IN) :: my_in(:)

REAL, INTENT(INOUT) :: my_inout(:)

REAL, INTENT(OUT) :: my_out(:)

! ...

CHARACTER(LEN=256) :: my_char

! ...

my_char &

 = 'This is a very very very very very very very ' &

 // 'very very very very very very very very very ' &

 // 'long character assignment'

• Short and simple Fortran statements are easier to read and understand than

long and complex ones. Where possible, avoid using continuation lines in a

statement.

• Avoid putting multiple statements on the same line. It is not good for

readability.

• Each program unit (module, subroutine, function etc.) should follow a

structure similar to the templates supplied with this document. The intended

behaviour of the unit should be clearly described in the header.

• Comments should start with a single '!' at beginning of the line. A blank line

should be left before (but not after) the comment line. The only exception is

for one line comments which can be indented within the code or placed after

the statement.

• Each subroutine, function and module should be in a separate file. Modules

may be used to group related variables, subroutines and functions.

Page 5 of 14

2.2 Style

The following is a list of recommended styles when you write code in Fortran.

• New code should be written using Fortran 95 syntax. Avoid un-portable

vendor/compiler extensions. Avoid Fortran 2003 features for the moment, as

they will not become widely available in the near future (however, there is no

harm in designing your code with the future in mind. For example, if there is a

feature that is not in Fortran 95 and you know that it is in Fortran 2003, you

may want to write your Fortran 95 code to make it easier for the future

upgrade).

• Write your program in UK English, unless you have a very good reason for

not doing so. Write your comments in simple UK English and name your

program units and variables based on sensible UK English words. Always bear

in mind that your code may be read by people who are not proficient English

speakers.

• When naming your variables and program units, always keep in mind that

Fortran is a case-insensitive language (e.g. EditOrExit is the same as

EditorExit.)

• Use only characters in the Fortran character set. In particular, accent

characters and tabs are not allowed in code, although they are usually OK in

comments. If your editor inserts tabs automatically, you should configure it to

switch off the functionality when you are editing Fortran source files.

• Although Fortran has no reserved keywords, you should avoid naming your

program units and variables with names that match an intrinsic FUNCTION or

SUBROUTINE. Similarly, you should avoid naming your program units and

variables with names that match a keyword in a Fortran statement.

• Be generous with comments. State the reason for doing something, instead of

repeating the Fortran logic in words.

• To improve readability, write your code using the ALL CAPS Fortran

keywords approach. This is the style used in most of the examples in this

document, where Fortran keywords and intrinsic procedures are written in

ALL CAPS. The rest of the code is written in either lowercase with

underscores or CamelCase. This approach has the advantage that Fortran

keywords stand out.

• Use the new and clearer syntax for LOGICAL comparisons, i.e.:

o == instead of .EQ.

o /= instead of .NE.

o > instead of .GT.

o < instead of .LT.

o >= instead of .GE.

o <= instead of .LE.

Page 6 of 14

• Where appropriate, simplify your LOGICAL assignments, for example:

Common practice

IF (my_var == some_value) THEN

 something = .TRUE.

 something_else = .FALSE.

ELSE

 something = .FALSE.

 something_else = .TRUE.

END IF

! ...

IF (something .EQV. .TRUE.) THEN

 CALL do_something()

 ! ...

END IF

Better approach

something = (my_var == some_value)

something_else = (my_var /= some_value)

! ...

IF (something) THEN

 CALL do_something()

 ! ...

END IF

• Positive logic is usually easier to understand. When using an IF-ELSE-END IF

construct you should use positive logic in the IF test, provided that the

positive and the negative blocks are about the same length. It may be more

appropriate to use negative logic if the negative block is significantly longer

than the positive block. For example:

Common practice

IF (my_var != some_value) THEN

 CALL do_this()

ELSE

 CALL do_that()

END IF

Better approach

IF (my_var == some_value) THEN

 CALL do_that()

ELSE

 CALL do_this()

END IF

Page 7 of 14

• To improve readability, you should always use the optional space to separate

the following Fortran keywords:

ELSE IF END DO END FORALL END FUNCTION

END IF END INTERFACE END MODULE END PROGRAM

END SELECT END SUBROUTINE END TYPE END WHERE

SELECT CASE

• If you have a large or complex code block embedding other code blocks, you

may consider naming some or all of them to improve readability.

• If you have a large or complex interface block or if you have one or more sub-

program units in the CONTAINS section, you can improve readability by using

the full version of the END statement (i.e. END SUBROUTINE <name> or END

FUNCTION <name> instead of just END) at the end of each sub-program unit.

For readability in general, the full version of the END statement is

recommended over the simple END.

• Where possible, consider using CYCLE, EXIT or a WHERE-construct to simplify

complicated DO-loops.

• When writing a REAL literal with an integer value, put a 0 after the decimal

point (i.e. 1.0 as opposed to 1.) to improve readability.

• Where reasonable and sensible to do so, you should try to match the names of

dummy and actual arguments to a SUBROUTINE/FUNCTION.

• In an array assignment, it is recommended that you use array notations to

improve readability. E.g.:

Common practice

INTEGER :: array1(10, 20), array2(10, 20)

INTEGER :: scalar

! ...

array1 = 1

array2 = array1 * scalar

Better approach

INTEGER :: array1(10, 20), array2(10, 20)

INTEGER :: scalar

! ...

array1(:, :) = 1

array2(:, :) = array1(:, :) * scalar

• Where appropriate, use parentheses to improve readability. E.g.:

a = (b * i) + (c / n) is easier to read than a = b * i + c / n.

Page 8 of 14

2.3 Fortran features

The following is a list of Fortran features that you should use or avoid.

• Use IMPLICIT NONE in all program units. This forces you to declare all your

variables explicitly. This helps to reduce bugs in your program that will

otherwise be difficult to track.

• Design any derived data types carefully and use them to group related

variables. Appropriate use of derived data types will allow you to design

modules and procedures with simpler and cleaner interfaces.

• Where possible, module variables and procedures should be declared PRIVATE.

This avoids unnecessary export of symbols, promotes data hiding and may

also help the compiler to optimise the code.

• When you are passing an array argument to a SUBROUTINE/FUNCTION, and the

SUBROUTINE/FUNCTION does not change the SIZE/DIMENSION of the array, you

should pass it as an assumed shape array. Memory management of such an

array is automatically handled by the SUBROUTINE/FUNCTION, and you do not

have to worry about having to ALLOCATE or DEALLOCATE your array. It also

helps the compiler to optimise the code.

• Use an array POINTER when you are passing an array argument to a

SUBROUTINE, and the SUBROUTINE has to alter the SIZE/DIMENSION of the

array. You should also use an array POINTER when you need a dynamic array

in a component of a derived data type. (Note: Fortran 2003 allows passing

ALLOCATABLE arrays as arguments as well as using ALLOCATABLE arrays as

components of a derived data type. Therefore, the need for using an array

POINTER should be reduced once Fortran 2003 becomes more widely

accepted.)

• Where possible, an ALLOCATE statement for an ALLOCATABLE array (or a

POINTER used as a dynamic array) should be coupled with a DEALLOCATE

within the same scope. If an ALLOCATABLE array is a PUBLIC MODULE variable,

it is highly desirable if its memory allocation and deallocation are only

performed in procedures within the MODULE in which it is declared. You may

consider writing specific SUBROUTINES within the MODULE to handle these

memory managements.

• To avoid memory fragmentation, it is desirable to DEALLOCATE in reverse

order of ALLOCATE.

Common practice

ALLOCATE(a(n))

ALLOCATE(b(n))

ALLOCATE(c(n))

! ... do something ...

DEALLOCATE(a)

DEALLOCATE(b)

DEALLOCATE(c)

Page 9 of 14

Better approach

ALLOCATE(a(n))

ALLOCATE(b(n))

ALLOCATE(c(n))

! ... do something ...

DEALLOCATE(c)

DEALLOCATE(b)

DEALLOCATE(a)

• Always define a POINTER before using it. You can define a POINTER in its

declaration by pointing it to the intrinsic function NULL(). Alternatively, you

can make sure that your POINTER is defined or nullified early on in the

program unit. Similarly, NULLIFY a POINTER when it is no longer in use, either

by using the NULLIFY statement or by pointing your POINTER to NULL().

• Avoid the DIMENSION attribute or statement. Declare the DIMENSION with the

declared variables. E.g.:

Common practice

INTEGER, DIMENSION(10) :: array1

INTEGER :: array2

DIMENSION :: array2(20)

Better approach

INTEGER :: array1(10), array2(20)

• Avoid COMMON blocks and BLOCK DATA program units. Instead, use a MODULE

with PUBLIC variables.

• Avoid the EQUIVALENCE statement. Use a POINTER or a derived data type, and

the TRANSFER intrinsic function to convert between types.

• Avoid the PAUSE statement, as your program will hang in a batch environment.

If you need to halt your program for interactive use, consider using a READ*

statement instead.

• Avoid the ENTRY statement. Use a MODULE or internal SUBROUTINE.

• Avoid the GOTO statement. The only commonly acceptable usage of GOTO is for

error trapping. In such case, the jump should be to a commented 9999

CONTINUE statement near the end of the program unit. Typically, you will only

find error handlers beyond the 9999 CONTINUE statement.

• Never use a GOTO to jump upwards in the code.

• Any GOTO must be commented to explain why it is there and what it is doing.

• Avoid assigned GOTO, computed GOTO, arithmetic IF, etc. Use the appropriate

modern constructs such as IF, WHERE, SELECT CASE, etc..

• Avoid numbered statement labels. DO ... label CONTINUE constructs

should be replaced by DO ... END DO constructs. Every DO loop must be

terminated with a corresponding END DO.

Page 10 of 14

• Never use a FORMAT statement - they require the use of labels, and obscure the

meaning of the I/O statement. The formatting information can be placed

explicitly within the READ, WRITE or PRINT statement, or be assigned to a

CHARACTER variable in a PARAMETER statement in the header of the routine for

later use in I/O statements. Never place output text within the format specifier,

i.e. only format information may be placed within the FMT= part of an I/O

statement. All variables and literals, including any character literals, must be

‘arguments’ of the I/O routine itself. This improves readability by clearly

separating what is to be read/written from how to read/write it.

• Avoid the FORALL statement/construct. Despite what it is supposed to do,

FORALL is often difficult for compilers to optimise (see, for example,

Implementing the Standards including Fortran 2003 by NAG). Stick to the

equivalent DO construct, WHERE statement/construct or array assignments

unless there are actual performance benefits from using FORALL.

• A FUNCTION should be PURE, i.e. it should have no side effects (e.g. altering an

argument or module variable, or performing I/O). If you need to perform a

task with side effects, you should use a SUBROUTINE instead.

• Declare the INTENT of all arguments to a subroutine or function. This allows

checks against unintended access of variables to be done at compile time. The

above point requiring functions to be pure means that all arguments of a

FUNCTION should be declared as INTENT(IN).

• Avoid RECURSIVE procedures if possible. RECURSIVE procedures are usually

difficult to understand, and are always difficult to optimise in a supercomputer

environment.

• Avoid using the specific names of intrinsic procedures. Use the generic names

of intrinsic procedures where possible.

• Use the ONLY clause in a USE <module> statement to declare all imported

symbols (i.e. parameters, variables, functions, subroutines, etc). This makes it

easier to locate the source of each symbol, and avoids unintentional access to

other PUBLIC symbols within the MODULE.

• Function or subroutine arguments should be declared separately from local

variables.

• The standard delimiter for namelists is \. In particular, note that &END is non-

standard and should be avoided.

• The use of operator overloading is discouraged, as it can lead to confusion.

The only acceptable use is to allow the standard operators (+,- etc.) to work

with derived data types, where this makes sense.

• Avoid using archaic Fortran 77 features and features deprecated in Fortran 90.

Page 11 of 14

2.4 Floating-point arithmetic

When writing scientific code, it is important to understand the differences between

normal arithmetic and the floating-point arithmetic used by computers. Due to the

limited precision available to represent real numbers, many things that are true for

normal arithmetic no longer hold in floating-point arithmetic. Special care must also

be given to treating variables in a way that is physically realistic, not just

mathematically correct. Failure to do so can result in a model that is over-sensitive to

both changes in computing platform and small perturbations in initial conditions.

2.4.1 Comparing real numbers

A common place for errors of this kind to arise is when comparing real numbers to

each other. Consider the following code:

IF (snow_tile > 0.0) THEN

 ...

ELSE

 ...

END IF

This code is meant to be modelling two different physical situations – the case where

snow is present on a tile and the case where it is not. You may expect that a tile with

no snow would have snow_tile set to 0. However, due to differences in compilers,

optimisation options and floating-point rounding errors, snow_tile could end up being

tiny (say 10
-20

) rather than 0. This snow amount is physically negligible, so we would

want the model to behave as if there is no snow. This is not the case, however, since

10
-20

 is greater than 0. This kind of unphysical branching can lead to significant errors.

Other than avoiding this kind of branching IF statement entirely, there are two ways

around this problem:

1. Specify a physically realistic tolerance level, e.g.

IF (snow_tile > tolerance) THEN

 ...

ELSE

 ...

END IF

where tolerance is some small value greater than 0.

One problem with this solution is that you may end up with several different

tolerances defined in various places in the code. For this reason, tolerance

should be obtained using the Fortran intrinsic functions EPSILON

(EPSILON(X) returns a nearly negligible number relative to 1) or TINY

(TINY(X) returns the smallest positive (non zero) number of the same type as

X that the computer can represent) where possible. If the values provided by

these intrinsic functions are inappropriate, the tolerance should be declared as

a PARAMETER in the variable declarations section of the programming unit.

When defining a value for tolerance, bear in mind that if the value is too

large it could lead to problems with conservation of variables (e.g. water,

energy, carbon).

Page 12 of 14

2. Set the variable in question to 0.0 whenever it makes sense physically, e.g.

IF (snow_tile should be 0 physically) THEN

 snow_tile = 0.0

END IF

IF (snow_tile > 0.0) THEN

 ...

ELSE

 ...

END IF

This solution avoids the problem of having several different tolerances defined

in the code. However, depending on how the condition ‘snow_tile should be 0

physically’ is defined, it could lead to problems with conservation of variables

(in this case, water, due to loss of snow).

Which solution to use is highly dependent on the particular problem, and requires

careful thought. In general, the 2
nd

 solution is preferable, since it avoids having

several different tolerances defined in the code.

Although the above conversation focuses on comparing values to zero, the same

concepts apply in the general case of comparing any real number to any other. For

example:

Common practice

IF (real1 > real2) THEN

 ...

ELSE

 ...

END IF

Better approach

IF (real1 - real2 > tolerance) THEN

 …

ELSE

 …

END IF

where, as above, tolerance is some suitably small number.

The same concerns about rounding errors must also be considered when comparing

two real numbers for equality, e.g.

Common practice

IF (real1 == real2) THEN

 ...

END IF

Page 13 of 14

Better approach

IF (ABS(real1 – real2) < tolerance) THEN

 ...

END IF

where, again, tolerance is some suitably small number. Such concerns with

rounding errors do not apply to INTEGER and LOGICAL comparisons, hence the form

value1 == value2 can be used for these.

2.4.2 Non-distributive arithmetic

Scientific programmers should also be aware that some algebraic identities that hold

for normal arithmetic no longer hold in floating-point arithmetic, mainly due to

rounding errors. In particular, unlike normal arithmetic, the order in which

calculations are performed will affect the answer given. For example, the following

statements are true for normal arithmetic, but do not hold in floating-point arithmetic:

x + (y + z) ≡ (x + y) + z

x * (y * z) ≡ (x * y) * z

x * (y / z) ≡ (x * y) / z

This can lead to extremely subtle errors that are hard to spot, so developers should

bear this in mind at all times. Trying to enforce the order of calculation using brackets

will not necessarily solve this problem, since the compiler will make decisions for

itself depending on optimisation options, etc.

A more in depth discussion of these kinds of rounding errors can be found in the

accompanying document ‘Dealing with rounding issues’ from the Met Office UM

perturbation sensitivity project. The document also includes some real world

examples of rounding issues from the Met Office Unified Model.

2.5 Further code guidance and best practices

• Avoid the use of ‘magic numbers’. A ‘magic number’ is a numeric constant

that is hard wired into the code. These are very hard to maintain and obscure

the function of the code. It is much better to assign the ‘magic number’ to a

variable or constant with a meaningful name and use this throughout the code.

In many cases the variable may be best placed in a module. This ensures that

all subroutines will use the correct value of the numeric constant and that

alteration of it in one place will be propagated to all its occurrences. For

example:

Common practice

IF (ObsType == 3) THEN

Better approach

INTEGER, PARAMETER :: SurfaceWind = 3 ! No. for surface wind

...

IF (ObsType == SurfaceWind) THEN

• Write well structured code making use of subroutines to separate specific

subtasks. In particular all file I/O should be done through subroutines. This

greatly facilitates the portability of the code. Subroutines should be kept

Page 14 of 14

reasonably short, but don't forget there are start up overheads involved in

calling an external subroutine, so they should do a reasonable amount of work.

• If you find yourself copying and pasting the same code, consider making it a

SUBROUTINE or FUNCTION that can be called from the different places in the

code.

• Any code that introduces new physics to JULES should have a switch to

enable it to be turned off. This makes it possible to run the model in a

configuration that is identical to the model before the new physics went in, in

order to check that nothing unexpected has been broken.

• Code should be accompanied by technical documentation describing the

physical processes that the additional code is intended to model and how this

is achieved. Any equations used should be documented (in their continuous

form where appropriate) along with the methods used to discretise these

equations. In the case where new subroutines/functions have been added, a

calling tree should be included. Any changes to the JULES control file should

also be clearly documented.

The most important thing is to always bear in mind that somebody will have to

maintain your code in the future. That person could even be you several years later!

Make sure you comment code thoroughly and use some common sense where

procedures are not clear from this document.

3 Standard code templates
Some standard templates for copyright notices and code files are provided as text files

with this document. When writing new code, these templates should be used as a

guide for the structure of the new files.

3.1 Code templates

Templates are provided for a SUBROUTINE, a FUNCTION and a simple MODULE. Text in

angle brackets provides placeholders for Fortran statements.

3.2 Copyright notice

Two different copyright notices are provided, one of which should be included at the

top of each source file that you write. Met Office contributors should use the Crown

Copyright notice, while other developers should use the Consortium Member

Copyright notice.

