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Abstract: The accurate forecast of air temperature plays an important role in water resources man-
agement, land-atmosphere interaction, and agriculture. However, it is difficult to accurately predict
air temperature due to its non-linear and chaotic nature. Several deep learning techniques have been
proposed over the last few decades to forecast air temperature. This study provides a comprehensive
review of artificial neural network (ANN)-based approaches (such as recurrent neural network
(RNN), long short-term memory (LSTM), etc.), which were used to forecast air temperature. The
focus is on the works during 2005-2020. The review shows that the neural network models can be
employed as promising tools to forecast air temperature. Although the ANN-based approaches have
been utilized widely to predict air temperature due to their fast computing speed and ability to deal
with complex problems, no consensus yet exists on the best existing method. Additionally, it is found
that the ANN methods are mainly viable for short-term air temperature forecasting. Finally, some
future directions and recommendations are presented.
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1. Introduction

Global warming has recently drawn scientists’ attention since it is correlated with the
rise in air temperature. Increasing air temperature leads to changes in climatic conditions,
such as sea-level rise, growth of extreme events, and global warming, ultimately negatively
impacting humans’ lives [1]. Air temperature is the state variable of the atmosphere and
affects atmospheric and land surface processes [2—4]. Forecasting air temperature is an
important part of weather prediction because it is used to protect human lives and prop-
erties. People may suffer potential health problems when the air temperature is not in a
suitable range [5,6]. Extreme changes in air temperature may cause damage to plants and
animals. The accurate forecast of air temperature is essential due to its significant effect on
various sectors, such as industry, energy, and agriculture [7,8]. Reliable air temperature
predictions increase the accuracy of energy consumption [9]. Air temperature is also one of
the key factors in predicting other meteorological variables, such as streamflow [10], evap-
otranspiration [11], and solar radiation [12]. Therefore, finding an appropriate approach
for the prediction of air temperature is vital and may mitigate the consequences of global
warming and climate change. Furthermore, the accurate prediction of air temperature
plays an important role in establishing a plan for human activities, energy policy, and
business development [13].

Recently, models based on artificial neural networks (ANNSs) have attracted scientists
attention in various disciplines, such as meteorology, water resources, and hydrology,
because of their capability in capturing nonlinear relationships between inputs and outputs.
Various ANNs-based approaches performed successfully in many hydrologic problems,
such as flood [14], rainfall [15], water quality [16], and air temperature [17] predictions.
Inspired by the biological nervous systems, ANNs are powerful tools for modeling nonlin-
ear relations between dependent and independent variables. Generalization is one of the
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capabilities of ANNSs, allowing them to predict patterns that were not provided to them
during training. As a result, ANN forecasting models are able to provide a more promising
performance than physical and statistical approaches. They are also easily accessible in
commonly used programming environments (e.g., Matlab, Python, etc.) as a toolbox.

Different types of ANNS (e.g., multi-layer perceptron (MLP), recurrent neural network
(RNN), long short-term memory (LSTM), convolutional neural network (CNN), etc.) have
been utilized to forecast air temperature [18]. Each type has its unique structure to learn the
air temperature patterns and forecast them. However, accurate air temperature forecasting
has remained a major challenge (especially when the forecast time horizon increases) for
many decades due to the chaotic and complex nature of air temperature data.

This paper provides a review of neural network (NN) models for air temperature
forecasting. We focused on the recent studies during the last 15 years. This review paper
also identifies new research problems arising from the published literature. To the best of
our knowledge, this is the first review paper on the application of neural network-based
techniques in predicting air temperature. In total, 26 studies that used different kinds of
neural networks, such as MLP, generalized feed forward neural network (GFFNN), modular
neural network (MNN), RNN, and LSTM, to predict air temperature are discussed. The
review of neural network methodologies and their performance will encourage researchers
to utilize these techniques to forecast air temperature.

2. ANN Inputs

This work focuses on the widely used neural network approaches (e.g., MLP, RNN,
and LSTM) in air temperature prediction. Different studies have used various input
variables as they can significantly impact the performance of models. In a number of studies
(e.g., Chattopadhyay et al. [19], Ustaoglu et al. [20]), air temperature was predicted based
on the historical air temperature data by accounting for time lags (the so-called univariate
model). Another common approach is to use other relevant climatic variables (e.g., rainfall,
air humidity, wind speed, air pressure, etc.) as inputs to forecast air temperature (the so-
called multivariate model) [21,22]. Therefore, the ANN models can be categorized into two
groupings: the first group uses only the historical air temperature measurements as inputs,
and the second group employs air temperature and other relevant hydrologic variables.

3. Artificial Neural Networks (ANNs)

ANN:s are a class of artificial intelligence, which work by imitating the biological
structure of the human brain. In this section, three commonly used types of ANNS (i.e., MLP,
RNN, and LSTM) are described. For a detailed description of radial basis function (RBF),
modular neural network (MNN), ward-style ANN, convolutional recurrent neural network
(CRNN), convolutional long short-term memory (ConvLSTM), generalized regression
neural network (GRNN), and convolution neural network (CNN), the readers are referred
to Ustaoglu et al. [20], Chattopadhyay et al. [19], Smith et al. [22], Zhang et al. [23], Kreuzer
et al. [24], Kreuzer et al. [24], and Lee et al. [25], respectively.

3.1. Multilayer Perceptron (MLP)

The MLP is a feed-forward ANN, which has been used widely for air temperature
prediction [19,26]. The MLP is composed of an input layer, one or more hidden layers, and
an output layer [27]. The basic processing elements of the MLP are interconnected neurons
or nodes, which are connected by adaptable weights (Figure 1). Each neuron receives input
signals from the outputs of other neurons. The output of a neuron is a function of the
weighted input, bias, and activation function [28]:

n

y = f()_wixi+b) )

i=1

where y is an output from the neuron, x; is the ith input to the neuron, w; is the connection
weight of the ith input, b is the bias, and f is the activation function.
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Figure 1. An illustration of a basic neuron.

During the training process, all weights and biases are adjusted by a learning algorithm
to minimize the forecasting error of networks. Then, the validation process is employed to
evaluate the performance of the neural network [17].

3.2. Recurrent Neural Network (RNN)

RNN is a class of ANNs developed for processing sequential data [29]. Unlike the
traditional ANNs, RNN has recurrent layers in which neurons are connected (Figure 2).
Hence, information from a neuron is transferred to the neurons in the same and next layers.
As seen in Figure 2, RNN also has a hidden state to recall some sequence data. RNN
computes new states by applying its activation functions to prior states and new inputs
recursively. The hidden state value (/) at a time step t can be obtained via:

he = f(wxxt +uphi—q +b) 2

where x¢, hy_1, wy and uy, are the inputs at time £, hidden states of the previous step (t — 1),
weight for the input, and weight for the previous state value, respectively. Additionally, b
is the bias and f is the activation function applied to the hidden state of current time.
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Figure 2. The architecture of a recurrent neural network.

RNN is convenient for processing time series as it is able to model the temporal
dynamics in the sequence of data by the feedback connections, which transmit informa-
tion from the previous input to the next one. However, a shallow or simple RNN often
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encounters the vanishing gradient problem [30]. Therefore, it cannot model the long-term
temporal patterns and make the network weak. In recent years, the gradient vanishing
problem in RNN has been resolved by the long short-term memory (LSTM) neural network,
which has greater computational cost.

3.3. Long Short-Term Memory (LSTM)

LSTM was first presented by Hochreiter [31]. LSTM is a class of RNN, which was
developed for learning long-term dependencies. Each neuron in LSTM is a memory cell,
which includes three gates: input gate, forget gate, and output gate to control the flow
of information between different time steps (Figure 3). Unlike conventional ANNSs, the
LSTM cells generate two separate values by a series of activations and operations. One
value is the cell state (c;) that carries information and stores memory in the long term, and
the other is the output of the hidden layer (s;). When the number of inputs increases, the
gradients to the first several inputs vanish and become equal to zero. The LSTM can solve
this problem by using the internal gates that can add, edit, or remove information in the
cell. The readers are referred to Tran et al. [32] for a detailed description of LSTM.
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Figure 3. The structure of a long short-term memory cell.

4. Related Work

Herein, we provide a summary of studies, which adopted neural network models to
forecast air temperature for a few minutes to several months ahead (see Table 1). The focus
is on reviewing the papers published during the last 15 years (2005-2020). The reviewed
studies are categorized based on their inputs into the univariate and multivariate models.
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Table 1. Description of selected studies.

Reference Input Data Region Type of Model Configuration of Hidden Layer Output
ANN (feed-forward back FFBF (7,5,1)
Past seven daily mean, propagation (FFBP), (2) radial RBF (Tmean, Tmin: 7,0.99,1; Tmax: Daily mean. maximum and
Ustaoglu et al. [20] maximum and minimum air 1989 to 2003 Turkey basis function (RBF) and, (3) 7,0.55,1) mglnimuni temperature
temperature generalized regression neural GRNN (Tmean: 7,0.05,1; Tmax: p
network (GRNN)) 7,0.08,1, Tmin: 7,0.07,1)
. . Mul’n.layer Perceptron (MLP), Number of hidden nodes .
Chattopadhyay et al. [19] Previous maximum 1901-2003 India Generalized Feed Forward Neural determined by the number of Mean monthly maximum
b ’ temperature values Network (GFFNN), and Modular adiustable parameters temperature
Neural Network (MNN). J p
Abhishek et al. [33] Historical '10-year data of a 1999-2009 Canada Feed-forward ANN 5-hidden-layer network with 10 or Daily maximum
particular day 16 neurons/layer temperature
Kumar et al. [34] Six previous weekly mean 2002-2011 India Feed-forward ANN 2 hidden layers with 5 One week ahead mean
temperature neurons/layer temperature
. . . . Daily maximum
Tran et al. [32] Past daily maximum 1976-2015 South Korea Traditional ANN, RNN, LSTM ch.lden nodes: 1-20 temperature for 1-15 days
temperature (from 7-36) Hidden layer: 1-3 ;
in advance
Six previous daily maximum . i Hidden layer: 1, 3,5 One day ahead maximum
Tran and Lee [35] temperature 1976-2015 South Korea Traditional ANN Parameters: 49, 113, 169, 353, 1001 temperature
Four past temperature data . . Convolutional recurrent neural 3 convolution layers followed a Four future temperature
Zhang etal. [23] map series 1952-2018 China network (CRNN) LSTM and a dense layer data map series
Historical time series of 3 LSTMs (20, 10, and 4 hidden
temperature Stacked LSTM cells)—fully connected layer
. . (4 neurons) One half-hour ahead
Lietal. [36] 2009 to 2018 China o] s temperature
Six past observations DNN ree hidden fayers with 12, 8 an
4 neurons
Maximum minimum and
Daily and monthly mean, mean ambient air
Afzali et al. [37] minimum and maximum 1961-2004 Iran Feed-forward ANN One hidden layer with 15 neurons temperature developing
ambient air temperature ANN models for one day
and one month ahead
December to May maximum Maximum and minimum
De and Debnath [38] Y 1901-2003. India Feed-forward NN One hidden layer with 2 neurons

and minimum temperature

temperature monsoon
months (June-August)
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Table 1. Cont.

Reference

Input

Data

Region

Type of Model

Configuration of Hidden Layer

Output

Smith et al. [22]

Up to prior 24 h: temperature,
wind speed, rainfall, relative
humidity
solar radiation, time-of-day,
day-of-year

2000-2005

Georgia, USA

Ward-style ANN

Hidden Layer: 3 parallel slabs
Hidden nodes: (2-75) nodes per slab

1 h to 12 h air Temperature

Smith et al. [39]

Up to prior 24 h: temperature,
wind speed, rainfall, relative
humidity
solar radiation, time-of-day,
day-of-year, hourly rate of
change in each of the above
weather variables in the last
24h

1997 to 2005

Georgia, USA

Ward-style ANN

Hidden Layer: 3 parallel slabs
Hidden nodes: 40 nodes per slab

1 h to 12 h air temperature

Altan Dombayci and
Golcti [17]

Month, day, and mean
temperature of the previous
day

2003-2006

Turkey

ANN (Levenberg-Marquardt
(LM) feed-forward
backpropagation algorithms)

One hidden layer with 6 neurons

Daily mean ambient
temperatures

Bilgili and Sahin [28]

Latitude, longitude, altitude,
and month

1975 to 2006

Turkey

MLP

One hidden layer with 32 neurons

Monthly temperature

Kisi and Shiri [40]

Latitude, longitude, altitude,
and month

1956 and 2010

Iran

Feed-forward ANN

One hidden layer with 4 neurons

Monthly temperature

Kisi and Sanikhani [41]

Number of the months,
station latitude, longi- tude
and altitude values

1986-2000

Iran

Feed-forward ANN

One hidden layer

Monthly air temperature
values

Sahin [42]

City, month, altitude, latitude,
longitude, monthly mean land
surface temperatures

1995 to 2005

Turkey

Feed-forward ANN

One hidden layer with 14 neurons
One hidden layer with 24 neurons

Monthly mean air
temperature

Salcedo-Sanz et al. [26]

Temperature in the previous
month, southern oscillation
index (SOI), indian ocean
dipole (IOD), and pacific
decadal oscillation (PDO)

1900-2010 for urban
and 1910-2010 for
rural stations in
Australia and
1930-2010 in New
Zealand’s stations

Australia and New
Zealand

Multilayer perceptron MLP

NA

Monthly mean air
temperature

Akram and El [43]

24 (or 72) temperature values

2000-2015

Morocco

LSTM

Two LSTM layers and a fully
connected hidden layer in between
with a 100 neuron

24 and 72 h
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Table 1. Cont.

Reference Input Data Region Type of Model Configuration of Hidden Layer Output
3 previous values of air
" temperature (t-1, t-2, t-3) and 2 hidden layers with 5 and 8 Half hourly air temperature
Jallal et al. [44] global solar radiation GSR (t, 2014 Moroceo MLP neurons (t)
t-1, t-2, t-3, t-4)
24 h weather data: hourly Number of LSTM layers and
Park et al. [45] wind speed, wind direction, November 1981 to South Korea LSTM number of hidden nodes were set to Temperature up to 14 days

and humidity

December 2017

4 and 384

in advance

Huang et al. [46]

8-9 temperature factors from
50 CLIPER predictors

Jan, 2015-Jun, 2018

14 stations in
Guangxi, China

Recurrent Neural Network (RNN)

One hidden layer with 10 neurons

24 h daily maximum and
minimum temperature

Sundaram et al. [47]

Air temperature, pressure,

Relative humidity, Mean wind

direction, Total cloud cover,
Horizontal visibility, Dew
point temperature

2006-2018

India

MLP

Five hidden layers with 16, 32, 16, 5,
and 1 neurons

Temperature for eight
weeks

Roy [48]

Past seven days of average
wind speed, precipitation,
snowfall, snow depth,
average temperature,
maximum temperature and
minimum temperature

1/1/2009 to 1/1/2019

John F. Kennedy
International
Airport, NY

MLP, LSTM, CNN+LSTM

MLP: 2 layers with 16 neurons per
layer
LSTM: 16 hidden neurons followed
by a dense layer
CNN+LSTM: has one convolutional
layer (32 filters with a kernel size of
5) followed by a LSTM cell
containing 16 neurons and finally a
dense layer

Average temperature for the
next day and 10 days ahead

Kreuzer et al. [24]

Air temperature, relative

humidity, relative air pressure,

sea level air pressure,
cloudiness, wind speed, wind
direction, precipitation,
month, hour of day

2009-2018

Germany

Univariate LSTM, multivariate
LSTM, ConvLSTM

Univariate and multivariate LSTM: 1
hidden layer with 32 hidden
neurons
ConvLSTM: 6 convolutional layers +
2 LSTM + 2 dense layers

24 h air temperature

Lee et al. [25]

Air temperature, precipitation,

humidity, vapor pressure,
dew point temperature, air
pressure, sea level pressure,
hours of sunshine, solar
radiation, total cloud cover,
middle-and low-level cloud
cover, ground surface
temperature, wind speed
and direction

2009-2018

South Korea

MLP, LSTM, CNN

MLP: 6 hidden layers
LSTM (daily input): 2 hidden LSTM
+ 3 dense layers
LSTM (hourly input): 2 hidden
LSTM + 6 dense layers
CNN: 5 convolutional layers + 2
dense layers

Daily average, minimum,
and maximum temperature
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4.1. Univariate Models

Ustaoglu et al. [20] employed three distinct ANNs namely, feed-forward back prop-
agation (FFBP), radial basis function (RBF), and generalized regression neural network
(GRNN), to forecast daily mean, maximum, and minimum air temperature in Turkey. The
models used daily air temperature measurements of the previous seven days to forecast
1-day-ahead air temperature. Using the correlation coefficient (R?), root mean square error
(RMSE), and index of agreement (IA) statistical metrics, they showed that all the utilized
neural network methods produced satisfactory results. Additionally, air temperature pre-
dictions from the ANN models were compared to those of the multiple linear regression
(MRL) approaches. The ANN methods were found slightly superior to the MLR models.

Chattopadhyay et al. [19] applied three types of ANNs (multilayer perceptron (MLP),
generalized feed forward neural network (GFFNN), and modular neural network (MNN))
to predict monthly maximum air temperature across the northeast of India. The period-
icity of 12 months was found in the monthly maximum air temperature time series, and
therefore a multiplicative model was used to deseasonalize the data. Additionally, the
increasing trend in time series was identified by both the Mann-Kendall non-parametric
and parametric tests. A trend equation was fitted to remove the trend from the deseason-
alized time series. Consequently, the monthly maximum air temperature time series was
found to be stationary. This allowed the networks to perform more efficiently. In their
study, maximum air temperature values in a number of previous months (ranging from 2
to 4) were used as inputs to the neural networks. It was found that the MNN model using
air temperature measurements in the previous four months performed better than MLP
and GFFNN.

Abhishek et al. [33] investigated the feasibility of the feed-forward neural network
(FFNN) for predicting daily maximum air temperature in Canada from 1999-2009. The
input data consisted of daily maximum air temperature measurements in the past 10 years.
Different transfer functions, number of hidden layers, and neurons were tested to evaluate
the performance of neural networks. Finally, the results showed that the ANN with
5 hidden layers, 10 neurons per layer, and a tan-sigmoid transfer function generated the
best maximum air temperature predictions.

Kumar et al. [34] used FFNN to forecast weekly mean air temperatures in India. Air
temperature data in the previous six weeks were used in various ANN architectures to
predict 1-week ahead air temperature. The predictive ability of different configurations
was assessed by computing R?> and RMSE metrics. Finally, a two-hidden-layer model with
five neurons in each layer was found to produce the best results.

Optimizing hyperparameters of ANNs improves their ability to forecast hydrologic
variables [49,50]. Tran et al. [32] employed a genetic algorithm (GA) to optimize hyperpa-
rameters of conventional multilayer ANN, RNN, and LSTM models. The hybrid models
were used to forecast maximum air temperature at the Cheongju station in South Korea.
Air temperature observations in the last seven days were used as inputs to forecast 1- to
15-days-ahead maximum air temperature. The results showed that the hybrid GA-LSTM
had a better performance than the other models for long-term air temperature forecasting.

In another effort, Tran and Lee [35] applied the traditional multilayer ANN models
to predict 1-day-ahead maximum air temperature at 55 stations in South Korea. They
tried various numbers of parameters (i.e., the total number of weights and bias) by using
different numbers of neurons and hidden layers. It was found that the ANN model with 5
hidden layers and a total of 49 weights and biases generated the smallest error at 52 stations
in South Korea.

Other studies used more complex deep learning architectures for air temperature
forecasting. For example, Zhang et al. [23] forecasted daily average air temperature for
4 days ahead by a convolutional recurrent neural network (CRNN), which combined
convolutional neural networks (CNNs) with recurrent neural networks (RNNs). They
utilized daily air temperature data over China from 1952 to 2018 to train the CRNN. The
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results demonstrated that their model could predict air temperature successfully based on
the previous air temperature data.

Li et al. [23] employed a stacked long short-term memory network (stacked LSTM) to
predict half-hourly air temperature from its historical observations. The proposed LSTM
model had three hidden layers with 20, 10, and 4 memory cells in each layer. The fully
connected layer and output layer had four and one neurons, respectively. Finally, the
LSTM model was compared with the deep neural network (DNN) and random forest (RF)
approaches under different sliding windows. It was observed that the network built by
stacked LSTM is superior to the DNN and RF methods.

Afzali et al. [37] developed two different types of neural networks (namely, FFNN
and Elman neural network) to predict 1-day-ahead mean, minimum, and maximum air
temperature in the Kerman city (Iran) from the corresponding values in the last 15 days. The
results showed that both neural networks provided satisfactory air temperature predictions.
Additionally, the Elman network generated better forecasts.

De and Debnath [38] employed the FFNN model to forecast the air temperature of
the monsoon months (June, July, and August) in India for 1901-2003. In their study, the
monthly mean air temperatures in December, January, February, March, April, and May
were used as inputs.

4.2. Multivariate Models

Smith et al. [22] used ANN models to forecast hourly air temperature for 1-12 steps
ahead. The inputs consisted of air temperature, relative humidity, wind speed, solar
radiation, and rainfall measurements in the previous 24 h. The data from 2001 to 2005
in the southern and central regions of Georgia were used to train and test the networks.
The models used a linear input layer, and three equally sized parallel “slabs” using the
Gaussian, Gaussian complement, and hyperbolic tangent activation functions in the hidden
layer. The number of hidden nodes varied from 2 to 75 nodes. The results showed that the
model with 40 nodes in the hidden layer produced the most accurate predictions.

Smith et al. [39] forecasted air temperature for 1-12 h ahead by the Ward-style ANN
model. Hourly air temperature, wind speed, relative humidity, solar radiation, and rainfall
observations as well as their hourly rate of change in the last 24 h were used as inputs.
The data were recorded by the Georgia Automated Environmental Monitoring Network
(AEMN) during 1997-2005. The temperature prediction models had a single hidden
layer with 120 nodes that were distributed equally among the three slabs. The MAE of
the evaluation set (2004-2005) ranged from 0.516 °C for the 1-h horizon to 1.873 °C for
the 12-h horizon prediction. Additionally, two ensemble techniques (parallel and series
aggregations) were investigated and found to be infeasible for air temperature prediction.

Altan Dombayci and Gélcii [17] employed the MLP neural network with Levenberg-—
Marquardt (LM) feed-forward backpropagation algorithms to predict daily mean air tem-
perature in Turkey for one day ahead. The model was trained and tested by the data in
2003-2005 and 2006, respectively. The inputs of the network were the month of the year,
the day of the month, and mean temperature of the previous day. The number of hidden
neurons was varied from 3 to 30, and the network with 6 hidden neurons produced the
best result.

Many studies utilized deep learning networks and geographical information to predict
air temperature. Bilgili and Sahin [28] used three geographical variables (latitude, longitude,
and altitude) and the number of months (1, 2, ... , 12) as the inputs of the ANN model to
predict monthly air temperature and rainfall in Turkey. The data from 76 weather stations
between 1975 and 2006 were used to train and test the model. They showed that the ANN
approach can predict monthly temperature and rainfall fairly well using the geographical
variables and number of months.

Kisi and Shiri [40] used the number of months (1-12) and geographical information
(latitude, longitude, and altitude) in ANN and the adaptive neuro-fuzzy inference System
(ANFIS) to predict monthly average air temperature at 30 sites in Iran. Their robustness was
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compared by the RMSE, MAE, and coefficient of determination (R?) metrics. The results
showed that the performance of ANN was better than that of ANFIS in most stations.

The geographical variables (latitude, longitude, and altitude) along with the month
of the year (1-12) were fed into the feed-forward network (FFN), ANFIS, support vector
regression (SVR), and gene expression programming (GEP) models to predict monthly
mean air temperatures at 50 stations in Iran by Kisi and Sanikhani [41]). The data of 30, 10,
and 10 stations were selected for training, validation, and testing the models. SVR had the
best performance followed by ANFIS and FFN.

Sahin [42] used the urban heat island (UHI) effect, number of months (1-12), altitude,
latitude, longitude, and monthly mean land surface temperatures of 20 cities in Turkey into
the three-layer FEN to predict monthly mean air temperature. The monthly data from 1995
to 2004 were used to train the FFIN model, while the data of 2005 were used to test it. In
their study, the number of hidden neurons was increased from 1 to 50 to find the optimized
neural network. In the test period, the RMSE of monthly mean air temperature predictions
at the 20 investigated cities ranged from 0.705 to 2.600 K.

Salcedo-Sanz et al. [26] compared the performance of SVR and MLP for predicting
monthly mean air temperature at 10 sites in Australia and New Zealand. Air tempera-
ture from the previous month, two dummy variables d; = sin(22) and d, = cos(4%?)
(wheren = 0,1,...,11 depending on the month of the year), Southern Oscillation Index
(SOI), Indian Ocean Dipole (IOD), and Pacific Decadal Oscillation (PDO) were used as
inputs [51,52]. The results showed that SVR was able to provide more accurate predictions
than MLP.

Akram and El [43] applied a deep LSTM network to forecast air temperature, humidity,
and wind speed for 24 (or 72) h ahead in 9 cities of Morocco using the 24 (or 72) previous
hourly values of air temperature, humidity, and wind speed as inputs. The model had a
fully connected hidden layer (with 100 neurons) between two LSTM layers. The results
showed that the proposed LSTM model could predict weather variables with high accuracy.

Jallal et al. [44] used an MLP model to predict air temperature in Morocco for 30 min
ahead from the three previous half-hourly air temperature and global solar radiation
measurements. They changed the number of hidden layers (from 1 to 5) and neurons (from
1 to 15) as well as activation functions (radial basis activation function, logistic sigmoid
function, and hyperbolic tangent function) to find the best configuration. It was found that
a two-hidden-layer network that used the hyperbolic tangent function with 5 and 8 hidden
nodes in each layer respectively generated the best predictions with the MSE of 0.272 °C
and R? of 0.997.

Park et al. [45] applied an LSTM model to forecast air temperature at three locations
in South Korea. Wind speed, air temperature, and humidity were employed as inputs. The
LSTM model with four layers could predict air temperature accurately for both short (6, 12,
and 24 h ahead) and long (14 days in advance) periods. The results showed that the LSTM
approach outperformed the deep neural network (DNN).

Huang et al. [46] utilized the RNN model to forecast daily maximum and minimum
air temperature at 14 sites in Guangxi, China. Based on the climatology and persistence
(CLIPER) method [53], the average, maximum, and minimum air temperature, and pre-
cipitation in the previous days, as well as a total of 50 CLIPER predictors were selected
for temperature prediction. The performance of the RNN model was compared with the
stepwise regression method. It was found that the accuracy of RNN was higher than that
of the stepwise regression method.

Sundaram et al. [47] compared the performance of three machine learning models
namely, support vector machine (SVM), MLP, and RNN for daily air temperature predic-
tion. Different meteorological variables, such as air temperature, atmospheric pressure,
relative humidity, wind direction, total cloud cover, horizontal visibility, and dew point
temperature, were inputted into the abovementioned models. The RMSE of air temperature
forecasts from RNN is 1.41 °C, which is lower than the RMSEs of 3.1 °C and 6.67 °C from
MLP and SVM, respectively.
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Roy [48] explored three deep neural networks namely, MLP, LSTM, and hybrid CNN-
LSTM, to forecast the air temperature for 1-10 days ahead. The past seven days of wind
speed, precipitation, snow depth, and mean, maximum, and minimum temperature were
used as inputs. The results indicated that the hybrid CNN-LSTM model outperformed the
other models.

Kreuzer et al. [24] used the convolutional long short-term memory (convLSTM)
method to forecast air temperature up to 24 h in advance in five weather stations of
Germany during 2009-2018. They compared the performance of convLSTM with those
of the seasonal autoregressive integrated moving average (SARIMA), seasonal naive ap-
proach, and univariate and multivariate LSTMs. Hourly air temperature, relative humidity,
cloud coverage, precipitation, wind speed and direction, month of year, hour of day, sea-
level air pressure, and the difference between the air pressure at the station and the sea level
were used as inputs in multivariate LSTM and ConvLSTM. They showed that the seasonal
naive approach has the worst performance for most of the prediction horizons. While the
SARIMA and univariate LSTM network performed well for the first two- to three-hour air
forecasts, the ConvLSTM and multivariate LSTM showed a better performance for longer
forecast horizons. In the stations with large variations of air temperature during the day;,
convLSTM outperformed other methods.

Lee et al. [24] employed three neural network models (namely, MLP, LSTM, and CNN)
to forecast the average, minimum, and maximum air temperatures for the next day in three
regions of South Korea. They tried both hourly and daily air temperature, precipitation,
humidity, vapor pressure, dew point temperature, atmospheric pressure, sea-level pressure,
hours of sunshine, solar radiation, cloud cover, ground surface temperature, and wind
speed and direction as inputs in the previous 30 days. Hourly input data provided better
information for daily air temperature forecasting than daily input data. Overall, the CNN
with hourly input data showed better performance than the MLP and LSTM.

5. Discussion

This study reviewed the recent (2005-2020) articles that utilized ANN methodologies
to forecast air temperature. For this purpose, 26 publications were chosen, categorized
according to their input variables, and finally discussed. As described in Section 4, neural
network approaches have been applied extensively in the context of air temperature
forecasting. The summary of the reviewed papers is provided in Table 1. As can be
seen, different types of neural network approaches, such as MLP, FFBF, GRNN, RBF,
CRNN, RNN, and LSTM, were used for forecasting air temperature. Some studies in
Table 1 also compared the performance of neural network techniques with those of other
machine learning methods, such as SVM, GEP, and RF [36,41]. They stated that the ANN
approaches often provide more accurate air temperature forecasts. Additionally, only a
few numbers of studies used deep learning methods, such as RNN and LSTM, although
they are highly promising.

A variety of meteorological and geographical variables have been used as inputs in the
neural network approaches. They include air temperature, wind speed and direction, air
pressure, precipitation, solar radiation, relative humidity, cloudiness, latitude, longitude,
and altitude [24,25,28]. Among them, air temperature, relative humidity, precipitation, and
wind speed are found to be the common inputs for air temperature predictions. While
various meteorological variables have been fed into different types of NN approaches as
inputs, the geographical inputs (i.e., latitude, longitude, altitude) have been used only
in simple NN techniques (e.g., MLP and FFNN) rather than complex ones (e.g., RNN
and LSTM). However, it should be noted that choosing the best input variables for a
particular NN approach is difficult due to the complexity of the problem and limited
number of studies.

Moreover, it is found that neural network methods are mainly applied to short-term
air temperature forecasting. Only a few studies were dedicated to the medium- and
long-term forecasting of air temperature, which mainly utilized the RNN and LSTM
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models due to their capabilities in capturing the temporal trends of air temperature time
series [32]. RNN and LSTM are known as efficient methods for long-term forecasting
of hydrologic variables [54,55]. However, there are only eight studies that forecasted air
temperature via RNN and LSTM. It is shown that the accuracy of the abovementioned
models varies mainly with the input variables and network structure. Using ancillary
data (e.g., rainfall, air pressure, and humidity) in the deep learning methods improves air
temperature predictions.

The literature shows that the performance of NN models is dependent on the network
configuration, such as the number of hidden neurons and layers [21,22,45]. Since there is no
rule for choosing the optimum number of hidden neurons and layers to avoid underfitting
and overfitting of the network, they were mostly determined by trial and error [20,44].
These optimal numbers could be found by searching algorithms, such as GA [32]. In
general, increasing the size of hidden layers and neurons allows the neural networks to
learn complicated processes more robustly, ultimately enhancing their forecasting abilities.
However, a number of studies showed that adding hidden layers and neurons did not
always increase the accuracy of the network [21,44]. Based on the literature, it is still
difficult to pick the best methodology for air temperature forecasting. As can be seen in
Table 1, there are a few studies that take advantage of optimization techniques, such as
GA, to tune the hyperparameters of neural networks for a more accurate air temperature
prediction. Hybrid models can improve the accuracy of air temperature predictions [56].
However, coupling the ANN models with optimization algorithms and developing hybrid
approaches have not yet been studied sufficiently. Therefore, the effectiveness of these
methods should be investigated thoroughly in predicting hydrologic variables and of
course, air temperature forecasting can highly benefit from them.

6. Conclusions and Future Research Work

In this paper, we conducted a comprehensive review of studies that forecasted air
temperature via neural networks. The review showed that air temperature could be
forecasted successfully by various types of artificial neural networks (ANNSs).

According to the reviewed studies, MLP and a lesser extent RBF, GRNN, and ward-
style ANN models were used to predict air temperature. It is noteworthy that the selection
of input variables highly affects the robustness of ANNs. The historical air temperature
and other micrometeorological variables were used as inputs in ANNs. Additionally, the
number of hidden neurons plays an important role in the accuracy of predictions. Selection
of the number of the hidden neurons is mostly performed by trial and error.

Overall, the neural network models have been shown to be promising and can provide
reliable air temperature forecasts. It is anticipated that neural networks play an important
role in the future of air temperature prediction. The information presented in this review
paper helps us understand the current state of air temperature predictions.

The following directions can be considered for future works:

e  The combination of neural networks with many optimization algorithms (e.g., particle
swarm algorithm (PSO), harmony search, genetic programming, etc.) has not been
applied to air temperature forecasting. The meta-learning approaches can be utilized
in the future to forecast air temperature more accurately. They can be combined
with neural network models to strengthen the model robustness since the heuristic
algorithm can optimize the hyperparameters of ANNSs.

o  The effect analysis of relevant meteorological (e. g., maximum, minimum, and mean
temperature, rainfall, and relative humidity) and geographical (e.g., latitude, longi-
tude, and elevation) variables should be performed to improve the accuracy of air
temperature prediction. Thus, the feature selection techniques, such as recursive
feature elimination, random forest, and correlation coefficient, should be employed to
select the useful input variables for air temperature forecast.

e  Comparison of the performance of ANN-based models with other soft computing
approaches, such as support vector machines (SVMs), autoregressive moving average
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model (ARMA), and extreme learning machines to determine the best approach to
forecast air temperature over different hydrologic conditions and time horizons.

e The long-term air temperature prediction has an important role in human lives and
other sectors, such as energy consumption and agriculture. Hence, it should be
investigated more deeply in future studies via the RNN and LSTM models. Their
performance should also be compared with other medium or long-range models, such
as the European Centre for Medium-Range Weather Forecasts (ECMWEF) model and
global weather forecast models [57].
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