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Abstract

In the present work a recently developed product, the South American Map-

ping of Temperature (SAMeT), is presented. SAMeT minimizes certain defi-

ciencies associated with both the eventual lack of observations and

incorporates temperature corrections due to elevation or lapse rate of tempera-

ture (LRT) considerations. SAMeT is based on combinations of observed 2-m

temperatures and ERA5 reanalysis, as well as LRTs values computed from

maximum (Tmax) and minimum (Tmin) temperatures. The LRT were com-

puted using a simple linear regression on a 40-year ERA5 reanalysis dataset

and a digital elevation model dataset from Global Digital Elevation

(GTOPO30). It was obtained that the computed LRT is consistently smaller

than the standard LRT for all the seasons and studied regions. The South

American territory was divided into four subdomains and the evaluation per-

formed via a cross validation. This methodology consists in removing 90% of

the observations to form OBS90 and generate the SAMeT fields. The remaining

10% (OBS10) is used for validation purposes. An additional dataset, hereafter

referred to as OBS90i, is obtained using Kriging interpolation of OBS90 along

with GTOPO30 and temperature adjustment by a standard LRT

(−6.5�C�km−1). The evaluation period was from January 2011 to December

2013. Thus by using the standard LRT, a systematic negative bias for the tem-

perature is obtained. On the other hand, ERA5 displays underestimation for

Tmax and overestimation for Tmin. Furthermore, in comparative terms ERA5

displays the larger errors; thus, it is suggested that a bias remotion is important

for any application involving these data. The systematic application of com-

puted values for LRT in addition to a combination between observations and

ERA5 data allows SAMeT to generate fields with smaller errors compared to

observations than ERA5 while keeping spatial correlations. Thus, the present

product brings an innovation to the temperature space fields for the South

American region.
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1 | INTRODUCTION

Temperature is one of the most important meteorological
variables for diverse activities ranging from management
of water resources, agrometeorological applications and
climate studies. It also serves as initial and boundary con-
ditions for numerical models. Temperature is measured
by meteorological stations at a height of 2 m above the
surface (T2m) and their representivity is limited to sur-
rounding areas of the point in which data are collected,
at best, being valid within a radius of 100 km
(WMO, 2010). The knowledge of their regular space–time
distribution can be used for several applications, such as
hydrology (Piani et al., 2010; Tobin et al., 2011), ecology
(Régnière and Sharov, 1999; Monestiez et al., 2001), agri-
culture (Schlenker and Roberts, 2009; Zhao et al., 2017),
energy (Jaglom et al., 2014; Scapin et al., 2016), among
others.

Regularly spaced products for T2m derived from ran-
domly distributed weather stations are obtained by taking
the observations to a reference vertical level, performing
the interpolation there and after that returned to the
corresponding height in the regularly spaced grid by cor-
recting information through both the lapse rate of tem-
perature and topographic information. However, we have
noted that for regions with scarce number of stations the
quality of the interpolated field (by solely using stations)
may not satisfactorily represent the real conditions and
additional information is needed, like for example those
provided from a reanalysis. Of particular interest are the
mountainous regions with a high-altitude variability (i.e.,
not a plateau) that lead to high spatial temperature vari-
ability (C�ordova et al., 2016); the presence of topography
over a determined region contributes to the spatial vari-
ability. Thus, the main uncertainties of the interpolated
T2m products could be associated to the lack of observed
data and to the representativeness of the lapse rate of
temperature (LRT) used for the interpolation processes
(Dodson and Marks, 1997; Jobst et al., 2017). Therefore,
uncertainties in the interpolated field can be associated
with both the lack of a necessary correction due to the
temperature decrease with height (LRT) and to the spa-
tial data scarcity (Dodson and Marks, 1997; Jobst et
al., 2017).

Many authors have worked around the limitations
related to the LRT by applying horizontal interpolation
methods that take into account the altitude of the
region to which data are being interpolated. Although
there is evidence that the LRT can vary over space and
time, many authors are inclined to use the international
standard atmosphere (ISA) with a temperature lapse
rate of −6.5�C�km−1 in their interpolation methods
(Maurer et al., 2002; Hamlet and Lettenmaier, 2005;

Arnold et al., 2006). However, more judicious studies
prefer to estimate the LRT values, since the use of con-
stant LRT may not be a fair representative of the atmo-
sphere at a given location, such as valleys, where the
thermal inversion can significantly change the LRT.
One of such studies by Rolland (Rolland, 2003) has
shown the temporal and spatial variability of the LRT
for a mountainous region of the United States (using
observations and numerical models). Rolland has
shown that the constant LRT approach (−6.5�C�km−1)
has proven to be not a close estimate, since computed
LRT values were substantially lower (between −3.9 and
−5.2�C�km−1) than the constant value of −6.5�C�km−1.
Similar considerations have also been found over the
Tianshan Mountains in China (Shen et al., 2016), Cana-
dian Arctic glaciers (Marshall et al., 2007; Gardner et
al., 2009), Arizona's semiarid (Harlow et al., 2004) and
Italian Alps (Rolland, 2003).

Another limitation of the interpolated fields is asso-
ciated with the scarcity of observed data over moun-
tains, forests, deserts and oceans, and according to
Vizuete et al. (2002) the accuracy of the interpolated
fields may vary significantly between the different inter-
polation methods depending on the spatial distribution
of the dataset. In this sense, the choice of the spatial
interpolation method is of paramount importance in
regions where data distribution is sparse. Thus, in order
to minimize the interpolation errors associated with the
lack of observations, data from numerical models
(Fuentes and Raftery, 2005; Kann et al., 2011),
reanalysis (Essou et al., 2017; Chen et al., 2019) and sat-
ellite estimates (Rozante et al., 2010; 2020) have been
combined to surface observations in order to produce a
more coherent meteorological fields. Many studies have
been concentrated to address precipitation products
over different regions such as South America (Vila et
al., 2009; Rozante et al., 2010; 2020), China (Shuai Han
and Shuai Han, 2019), Asia (Jia et al., 2013), Ethiopia
(Dinku et al., 2014), Nigeria (Grimes et al., 1999), Aus-
tralia (Chappell et al., 2013), India (Mitra et al., 2013),
among others. However, relatively less studies with a
focus on temperature has been found. Chen et
al. (2019) combined observed temperature data for
China with reanalysis data from the European Center
for Medium Range Weather Forecasts (ECMWF) and
concluded that interpolated temperature errors increase
with altitude and reduces with increasing data density.

The main objective of the present study is to investi-
gate whether the combination of observed T2m and
reanalysis corrected through a variable LRT is capable of
producing more realistic high resolution (5 km) tempera-
ture fields over South America. The resulting product of
the combination of observed data, reanalysis and the
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correction by the variable LRT, henceforth called South
America Mapping of Temperature (SAMeT), will be gen-
erated and made operationally available from January
2000 to the present.

2 | DATA AND METHODOLOGY

2.1 | Area of study

South America is the fourth largest contiguous land mass
(Alvarez-Varas et al., 2016), stretching from the Gulf of
Darién in the northwest to the archipelago of Tierra del
Fuego to the south. The southernmost latitude is 55�S,
while the northernmost is at 12�N. It is bathed by the
Caribbean Sea (to the north), Atlantic Ocean to the east
and the Pacific Ocean to the west; all of them have a

strong influence on the circulation characteristics of the
continent (Satyamurty et al., 1998). Another important
and distinctive geographical feature of the continent is
the presence of the Andes, a steep and relatively narrow
mountain range that extends, meridionally (about
7,000 km), across the western part of the continent
(Figure 1b). The Andes is the longest surface mountain
chain and the second tallest surface chain of mountains
on earth, reaching almost 7,000 m, playing important
roles on the flow over South America including the low
level jets, and consequently affecting the transport of
moisture from the Amazon to the subtropical regions of
the continent (Vera et al., 2006; Insel et al., 2010).
Another important feature of South America is the Ama-
zon forest, occupying about 35% of the total continental
area and 65% of the tropical area. South America also
contains some of the driest places in the world, including

FIGURE 1 A map for the space distribution of the gauge stations (dots for Brazil and crosses for other countries) on top of the

GTOPO30 elevation map (shaded) along with the square boxes used to delimitate the computation of the LRT (a); time evolution of the 15-

day running mean of the number of observations for each defined box (b); and time evolution of the 15-day running mean of the number of

observations for Brazil (open circle), other countries (crosses) and all of South America (dotted) (c) [Colour figure can be viewed at

wileyonlinelibrary.com]
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the hyperarid (<2 mm�year−1) core of the Atacama
Desert in northern Chile (Ritter et al., 2019). South Amer-
ica can be divided into four distinct climate zones
(Garreaud et al., 2009): tropical, temperate, dry and cold;
distributed according to the relief and other environmen-
tal conditions involving intricate sets of processes that
are out of the scope of the present study. In general, rain-
fall is plentiful in most parts of South America, with the
exception of the desert areas of Peru and northern Chile,
Argentine Patagonia and northeastern Brazil.

The analysis was regionalized by selecting boxes
(Figure 1a). The selection was based on practical results.
An initial study performed using a unique LRT for the
whole South American continent was made. This zeroth
order approach produced better metrics when compared
to the ERA5 reanalysis. The selection of a unique value
of LRT was supported by an EOF analysis performed over
monthly data and for variables like maximum (Tmax)
and minimum (Tmin) temperatures. To be more specific,
the selection is supported by the EOF1 (not shown) that
was obtained after the removal of the seasonal cycle and
long-term trends. Moreover, when we performed the sep-
aration in boxes, we obtained even better results than
those using a unique LRT for the whole South American
continent. It is worth mentioning, as suggested by the
reviewers, that there is still space for improvements by
using a more sophisticated clusterization method like k-
means, fuzzy c-means (e.g., Podani, 2005 and references
therein), and in fact we have started exploratory research
to apply k-means. However, some difficulties inherent to
the method has been found and to this point we do not
have something ready. More details about boxes are given
in section 2.2.

2.2 | Observed data

In the present study, the observed data corresponds to
the daily maximum temperature (Tmax), daily minimum
(Tmin) and elevation data (H). The data come from dif-
ferent sources (data stations) received operationally by
the Brazilian Weather Forecast and Climate Studies Cen-
ter/National Institute for Space Research (CPTEC/INPE).
Concerning the sampling frequency, some sources report
daily data, as is the case of the Surface Synoptic Observa-
tions (SYNOP) from the Global Telecommunications Sys-
tem (GTS), and either Tmax or Tmin are taken directly.
For those the other sources such as METeorological
Aerodrome Report (METAR), automatic data collection
platform (PCDs) and regional meteorological centres that
provide hourly time series of temperature, Tmax and
Tmin, are obtained from the diurnal cycle of each
weather station.

In Figure 1a the data are depicted using black circles
and crosses corresponding to data stations that are within
Brazil or that correspond to surrounding countries,
respectively. The digital elevation (Digital Elevation –
Global 30 Arc-Second Elevation or GTOPO30) is also
depicted in shaded. This data were obtained through the
spatial data access tool (SDAT; ORNL DAAC, 2017) for
more information see https://webmap.ornl.gov. Con-
cerning the spatial distribution, we can see that the den-
sity of data stations over BOX1 and BOX3 is decreasing
from the coastal strip towards the interior of the conti-
nent; this behaviour is more prominent to the north of
10�S. It is also possible to be noted that BOX1 and BOX4
are also characterized for having low density of stations.
For BOX4 no data to the south of 50�S is reported by any
station (Figure 1a).

The amount of daily observations that report T2m for
each BOX varies through the years; the trend to decrease
is more accentuated for BOX3 for the other boxes the
trend is not perceptible (Figure 1b). Most of the observa-
tions are located in BOX3 (on average 900 per day) and
BOX4 has the smaller number of observations (less than
50 per year); BOX1 and BOX2 contribute with an average
amount of 200 and 115 observations per day, respectively.
The criterion used to select the evaluation period to be
reported was based on those years with the largest avail-
able observations. The spatial distribution of stations that
reported more than 80% of the days (above 876 days) was
January 2011 to December 2013 (see Figure 1b). Thus, it
was selected for evaluation. However, similar results
were obtained for 2019 that was a year with the smallest
available data round year.

Another important point is that the numbers of sta-
tions reported from Brazil (see Figure 1c) have had a
sustained decrease, and this trend has not been verified
for the number of stations reported from other countries.
This alert is important as the referred tendency poten-
tially threatens the capability to accurately represent the
atmospheric conditions and to sustain the quality of the
products derived with possible implications for both
monitoring and modelling efforts.

Even when observed data are representative of the
“truth,” it is quite common that they are affected by sys-
tematic or random errors, even for those collected from
automatic stations. Among the main factors causing the
errors are (a) ungauged or aged instruments; (b) errors in
the acquisition process; (c) errors in the transmission. By
virtue of these errors, a quality control, the operational
CPTEC/INPE two step quality control, was applied to the
dataset studied. In the first step, labelled as objective, any
suspicious values are treated in a system that includes out-
liers remotion (Tukey, 1977), internal check (Baker, 1992)
and space–time consistency (Xu et al., 2014). After that, in

4 ROZANTE ET AL.

https://webmap.ornl.gov


the second step, labelled as subjective, a meteorologist
accepts/rejects data identified in the objective step. All the
data depicted in Figure 1a–c has already passed by the
quality control.

2.3 | ERA5 reanalysis

The ERA5 is an acronym for the European Centre for
Medium-Range Weather Forecasts (ECMWF) fifth gener-
ation global reanalysis. The ERA5 two meters tempera-
ture (T2m) was combined with observations and are the
basis for the computation of the LRT. ERA5 reanalysis
succeeds the previous ERA-Interim reanalysis and con-
tains several improvements with respect to its predeces-
sor, which ranges from space–time resolution to
improvements in the representation of atmospheric pro-
cesses. For instance, the horizontal resolution, the num-
ber of vertical levels and the enabled time–frequency has
changed from (79 km, 60 levels, and 4 times a day or
every 6 hr) for the ERA-Interim to (31 km, 137 levels,
and 24 times a day or every 1 hr) for the ERA5. The
newer reanalysis is now providing a measure of the
uncertainty through a 10-members ensemble data-
assimilation (EDA) at a coarser resolution of 63 km and a
frequency of 8 times a day or every 3 hr. In addition, the
representation of different atmospheric conditions has
been improved like in the Antarctic Peninsula (Tetzner et
al., 2019), United States (Hoffmann et al., 2019), North
America (Tarek et al., 2020) and China (Zhang et
al., 2019). ERA5 combines model data, satellite and
observations from all the globe through a data assimila-
tion process (see Hersbach et al., 2020). Currently, ERA5
is available since January 1979 to the present with a
latency of 5 days through the Copernicus data store (cds.
climate.copernicus.eu).

2.4 | Estimate the lapse rate of
temperature

To estimate the lapse rate of temperature (LRT), the T2m
from the historical 40 years of data (1979–2019) and the
GTOPO30 with a resolution of 900 m were used.
Observed data were not included for the computation as
some regions depicted data shortage. The procedure
through which LRT is obtained is as follows: (a) From
the hourly ERA5 reanalysis data both Tmax and Tmin
were extracted for each day considering the entire studied
period. (b) Quarterly means from these fields were com-
puted using daily data from the previous step. (c) For
each grid point of the mean fields, an elevation was
assigned using the closest elevation data from GTOPO30.

(d) To regionalize the computation, the studied domain
was divided in four boxes (Figure 1b) taking into account
both the elevation and the spatial distribution of moisture
over South America since it influences the LRT values
(Kattel et al., 2013; Li et al., 2013). (e) For each selected
box a linear fit is performed on temperature and height
data to obtain an slope representing the LRT and a linear
intercept parameter Co (Equation (1); see also Rol-
land, 2003; Blandford et al., 2008; Minder et al., 2010),

T=Co+LRT�H, ð1Þ

where T represents either Tmax or Tmin in �C is the
dependent variable, Co is a linear intercept in �C rep-
resenting the temperature for the case of H equal to zero,
LRT is the lapse rate of temperature (�C�km−1) and H the
independent variable (elevation in km). (f) Quarterly
means of the LRT values for austral summer (DJF),
autumn (MAM), winter (JJA) and spring (SON) were
obtained.

2.5 | South American Mapping of
Temperature

SAMeT is designed to minimize errors that occur during
interpolation of temperature over regions with data
scarcity and to contemplate elevation effects due to rug-
ged topography. SAMeT is obtained through the follow-
ing steps: (a) combine ERA5 with observations,
attributing more importance to the observations; (b)
adjust temperature data as a function of the LRT. The
detailed processes to obtain SAMeT are as depicted in
Figure 2.

2.5.1 | Combine ERA5 with observed data

• A bias remotion of the ERA5 using observed data
interpolated to the reanalysis grid through ordinary
Kriging method.

• Observed data (black dots) are georeferenced with
respect to its nearest ERA5 horizontal grid point
(shaded; see Figure 2a).

• For grid points in which there exist observations the
ERA5 are omitted within a radius of roughly 100 km
(see Figure 2b). This is in agreement with the WMO
stipulated influence radius for meteorological stations.
However, preliminary test using a small period indi-
cates that reducing the influence radius to 50 km
improves all the metrics (not shown). Further studies
are needed to verify which influence radius represents
the observed data.
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• The observations and the unbiased ERA5 data that
were not removed are tabulated (see Figure 2c) and
used later for the construction of SAMeT.

2.5.2 | Adjustment of the temperature data
as a function of LRT

• Temperature data (from the table) are taken to the sea
level through a single linear regression (Equation (1))
using LRT values estimated for the box and elevation
data for each point (Figure 2d).

• Data taken to the sea level are spatialized to a 5-km
resolution using ordinary Kriging interpolation
(Figure 2e).

• Finally, the 5-km resolution spatialized data are
corrected by the LRT using Equation (1) and an LRT
(Figure 2f) for each of the defined boxes, the digital
elevation from GTOPO30 to obtain the SAMeT product
(Figure 2g).

2.6 | Evaluation methods

This section is devoted to the evaluation of both the LRT
estimates and also the performance of SAMeT. The evalu-
ation period was from January 2011 to December 2013.
This period was selected due to the larger number of
available observations (on average 1,500 observations per
day). The adopted scheme is the cross evaluation and
consists of a random split of data 90% of the observed
data (OBS90) for the generation of the interpolated data

and 10% of the observations (OBS10) for evaluation pur-
poses (see also Rozante et al., 2020). Figure 3 depicts the
cross-validation scheme. The procedure is performed
every day throughout the whole evaluated period. From
the observational data set (see step 1), an amount of 10%
of the data (OBS10) is randomly removed for each of the
indicated boxes (see step 2 in the diagram). The
remaining data (OBS90) along with GTOPO30, the esti-
mated LRT and the reanalysis ERA5, are used to build
SAMeT (step 4). For comparison purposes, OBS90 data
are also interpolated using Kriging method, GTOPO30
and a temperature adjustment by using the standard
LRT; the product obtained is OBS90i (step 5). The tem-
perature values of the removed points (latitude and longi-
tude) (OBS10) are compared to the closest grid points of
ERA5, SAMeT and OBS90i and presented in table (step
6). Information referring to this table is applied to statisti-
cal metrics (step 7).

The statistical metrics to evaluate the results were (a)
mean error (ME), (b) root-mean-square error (RMSE)
and (c) Pearson correlation coefficient (r), as described in
the following equations in Table 1.

3 | RESULTS AND DISCUSSIONS

3.1 | Lapse rate of temperature

The results of the linear regressed LRT for both the maxi-
mum (LRTmax) and minimum (LRTmin) temperatures
estimated for the four boxes used to generate SAMeT are
presented in this section. Relative moisture derived from

FIGURE 2 Schematic illustration of the processes to obtain SAMeT product; (a) quality controlled observations are georeferenced

(black dots) to the ERA5 gridded data (shaded); (b) spatial distribution of the influence radius of the quality controlled observed data into

the ERA5 gridded data; (c) tabulation of the data obtained from the observations and ERA5 data; (d–f) Kriging interpolation with

adjustment of the LRT; (f) SAMeT product with a 5-km resolution [Colour figure can be viewed at wileyonlinelibrary.com]
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the ERA5 air temperature and dewpoint were also dis-
cussed, since the distinction between dry and wet condi-
tions is of extreme importance in controlling the lapse
rate near the surface (Kattel et al., 2013). Figure 4 depicts
the austral hemisphere seasonal means (summer, DJF;
autumn, MAM; winter, JJA and spring, SON) for

LRTmax, LRTmin and relative moisture for the four stud-
ied boxes. BOX1 which is located into the equatorial
band (see Figure 4a) either the LRT as well as the relative
moisture remains almost constant along the different sea-
sons, with mean values of −3.82�C�km−1 and 83%,
respectively. BOX2 corresponds to the Andean region

FIGURE 3 Schematic diagram depicting how data was split, to obtain the referential temperature OBS10 to be compared with SAMeT,

OBS90i and ERA5 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Statistical indices

Statistical index Equation Optimum value

Root-mean-square error

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
p=1

TFp−Opð Þ
N

s
0

Mean error
ME= 1

N

PN
p=1

TFp−Op
� � 0

Pearson correlation coefficient

r=

PN
p=1

Op−Oð Þ: TFp−TFð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
p=1

Op−Oð Þ2
� � PN

p=1

TFp−TFð Þ2
� �� �s

1

Note: TF is the temperature fields (SAMeT, OBS90i or ERA5); O is the observational data (10% of the available station data are randomly removed); p is the

point of station; N is the number of stations.
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(Figure 4b) consequently records the largest surface ele-
vations. BOX2 depicts a pronounced variation of the
LRTmax along the different seasons. For summer and
autumn the mean LRTmax was −3.70�C�km−1 and
LRTmin was −4.16�C�km−1, while for winter and
spring mean LRTmax −4.03�C�km−1 and LRTmin
−4.32�C�km−1. It is noticeable that the slight increase of
the LRT for the winter and spring coincide with a light
increase in the moisture (about 10%). In BOX2 LRTmin
is larger than LRTmax for all the seasons. In a recent
study, Navarro-Serrano et al. (2020) using observed data
for the Andean region of Equator and Peru, which corre-
sponds to BOX1 and BOX2, obtained similar values for
the LRT than those obtained here; thus, ERA5 can be
used to estimate LRT in regions with lack of observed
data. BOX3 (Figure 4c), which is located mostly over Bra-
zil, depicts a pattern with moisture of around 77% for
summer and autumn, and 67% for winter and spring.
Mean values of LRT for summer and autumn are
LRTmax −3.42�C�km−1 and LRTmin −3.40�C�km−1. For
winter LRT is −4.40�C�km−1 for LRTmax and
−4.46�C�km−1 for LRTmin. For spring the LRT was
smaller (with respect to winter) with LRTmax
−4.24�C�km−1 and LRTmin −3.81�C�km−1. BOX4
(Figure 4c), which is located to the south of the conti-
nent, depicts a pronounced seasonal pattern for the mois-
ture, with values of around 55% during summer and 74%
during winter. This characteristic is reflected on the sea-
sonal pattern for LRT with maximum values during

summer and spring and minimum values during autumn
and winter. Generally, temperature lapse rates are wea-
ker under moister than under drier conditions (Blandford
et al., 2008; Minder et al., 2010), which could be associ-
ated to the larger thermal inertia of the water vapour, the
propention to saturation with the decrease of tempera-
ture and also to the latent heat released from condensa-
tion. All LRT computed in the present study based on
ERA5 data are lower than those obtained from standard
atmospheres (−6.5�C�km−1). This indicates that the tem-
perature would be warmer than those estimated on the
basis of standard LRT. Several studies have described the
space and time variability of the LRT, and consistently
reported values for LRT smaller than −6.50�C�km−1 over
different regions like: the Appalachian mountains (Bol-
stad et al., 1998), Canadian rocky mountains (Shea et
al., 2004), Northern Canadian islands (Marshall et
al., 2007), and Arctic glaciers (Gardner et al., 2009).

In order to verify whether the temperature field based
on the estimated LRT (ELRT) produces consistent spatial,
it was compared to a similar field that was spatialized
using a standard atmosphere LRT (SLRT =
−6.5�C�km−1). Interpolations using OBS90 SLRT and
ELRT for the years 2011–2013. Cross-validation was used
against OBS10 and although daily data are generated,
results were presented through quarterly means.

The averaged RMSE for each of the studied boxes is
depicted in Figure 5. The errors for temperature obtained
using ELRT are smaller than those obtained through

FIGURE 4 Quarterly means of

LRTmax, LRTmin and relative

moisture for BOX1 (a), BOX2 (b),

BOX3 (c) and BOX4 (d), respectively

[Colour figure can be viewed at

wileyonlinelibrary.com]
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FIGURE 5 Quarterly mean of

the RMSE for the maximum

temperatures and minimum

temperatures spatialized using SLRT

and ELRT for BOX1 (a), BOX2 (b),

BOX3 (c) and BOX4 (d) [Colour figure

can be viewed at

wileyonlinelibrary.com]

FIGURE 6 Quarterly mean

error of the maximum temperatures

and minimum temperatures

spatialized using SLRT and ELRT

for BOX1 (a), BOX2 (b), BOX3 (c)

and BOX4 (d) [Colour figure can be

viewed at wileyonlinelibrary.com]
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SLRT. For all the analysed boxes, the seasonal variability
of the errors is pronounced for the minimum tempera-
ture, while they are almost constant for the maximum
temperature. The largest errors for BOX1 (Figure 5a) are
obtained during summer (2.75�C). The RMSE for Tmax
remains almost constant along the seasons being 2.71�C
(SLRT) and 1.50�C (ELRT). In BOX2 (Figure 5b), which
corresponds to the Andean region (largest elevations), is
also the area with the largest errors. The best perfor-
mances of the product using ELRT are obtained in BOX3

(Figure 5c). While BOX4 is less sensitive to the use of
ELRT (Figure 5d). The analysis of the mean error (Fig-
ure 6) shows a clear tendency to underestimate the tem-
perature values (SLRT). The use of the ELRT contributes
to reducing the negative bias, mainly for BOX3
(Figure 6c). Further studies can be conducted in order to
achieve a better characterization of the region to which
the LRT spatialization must be applied. The use of SLRT
tends to produce negative bias and in part this explains
the tendency to underestimate.

FIGURE 7 BOX1 time series for

temperature (a, b); mean error (c, d);

RMSE (e, f); Pearson correlation

coefficient (g, h) for SAMeT (closed-

circle-line), OBS90i (X-line), ERA5

(closed-squared line). Left panel is for

Tmax while right panel is for Tmin.

Shaded in grey if for OBS10 data

[Colour figure can be viewed at

wileyonlinelibrary.com]
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3.2 | South American Mapping of
Temperature

In this section an assessment of SAMeT for 2011–2013 is
depicted for all the studied boxes. For the sake of compar-
ison, the ERA5 and OBS90i will also be discussed. The
results and the statistical indexes for the maximum
(Tmax) and minimum (Tmin) temperature were depicted
for each of the studied boxes. For each day of the time
evolution, an average for temperature and statistical indi-
ces (obtained from OBS10) is computed. A 7-day running
mean was also applied to both temperature and statistical
indices.

The general characteristics are well represented con-
sidering the different data sources used (i.e., SAMeT,
ERA5 and OBS90i) for the whole selected period and
every selected box, including a representation of the
annual cycle by all three data sources. However, SAMeT
performs better in terms of BIAS and RMSEs and also
depicts higher Pearson correlations when compared to
ERA5 and OBS90i. ERA5 tends to depict a shorter diur-
nal range, with negative bias (underestimation) for Tmax
and positive bias (overestimation) for Tmin. OBS90i has a
negative bias (underestimation) for both Tmax and Tmin;
this could be related to the largest lapse rate used to
obtain OBS90i.

FIGURE 8 BOX2 time series

for temperature (a, b); mean error

(c, d); RMSE (e, f); Pearson

correlation coefficient (g, h) for

SAMeT (closed-circle-line),

OBS90i (X-line), ERA5 (closed-

squared line). Left panel is for

Tmax while right panel is for

Tmin. Shaded in grey if for OBS10

data [Colour figure can be viewed

at wileyonlinelibrary.com]
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BOX1, located over the equatorial area, depicts the
smaller variations in temperature along their annual
cycle, being smaller than 2�C for Tmax (Figure 7a) and
1�C for Tmin (Figure 7b). For both Tmax and Tmin
SAMeT's data are closer to the observed data and depict a
mean error quite close to zero. Also, OBS90i and ERA5
tend to underestimate Tmax with ERA5 depicting the
largest mean error; ERA5 overestimates Tmin (Figure 7c,
d). SAMeT also displayed the smaller values of RMSE for
both Tmax and Tmin, with ERA5 performed worse than
the other for Tmax and almost the same as OBS90i for

Tmin (Figure 7e,f). Pearson correlation is also favouring
SAMeT, performing better than the second better corre-
lated OBS90i and the third is ERA5. Furthermore,
improvements with SAMeT are larger for Tmax
(Figure 7g,h).

For BOX2, that includes an Andean region sector
with the highest mountains as well as part of the Amazon
vessel. For this BOX, a larger range of temperatures
between summer and winter are noted with SAMeT
depicting values closer to the observations (Figure 8a,b);
the mean diurnal range difference (Tmax − Tmin) can be

FIGURE 9 BOX3 time series

for temperature (a, b); mean error

(c, d); RMSE (e, f); Pearson

correlation coefficient (g, h) for

SAMeT (closed-circle-line),

OBS90i (X-line), ERA5 (closed-

squared line). Left panel is for

Tmax while right panel is for

Tmin. Shaded in grey if for OBS10

data [Colour figure can be viewed

at wileyonlinelibrary.com]
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as large as 11�C (not shown). ERA5 and OBS90i underes-
timate Tmax, with ERA5 displaying the larger bias.
SAMeT has the smallest mean error for Tmax and Tmin,
tending to overestimate (Figure 8c,d). The mean error for
the period was about 0.2�C. For winter, ERA5 depicts a
contrasting behaviour with smaller errors for Tmax and
larger errors for Tmin. SAMeT performs better than the
other data sources for both Tmax and Tmin, and
although Tmin depicts smaller RMSEs, the improve-
ments against other data sources are larger for Tmax
(Figure 8e,f). For Tmin, the largest RMSEs are obtained

during winter (Figure 8f). For ERA5 and OBS90i there is
an intra-annual alternancy of the RMSE skill. SAMeT
also displays the best Pearson correlation coefficient
Figure 8g,h); the correlations are quite close for the data
sources used and there is a notorious decrease of the cor-
relation for warmer seasons. The variability in correla-
tions is more accentuated for Tmax and more flat for
Tmin, probably associated with other related variables
not considered.

BOX3 is the region with the larger number of obser-
vations. It could be seen that SAMeT is closest to the

FIGURE 10 BOX4 time

series for temperature (a, b);

mean error (c, d); RMSE (e, f);

Pearson correlation coefficient

(g, h) for SAMeT (closed-circle-

line), OBS90i (X-line), ERA5

(closed-squared line). Left panel

is for Tmax while right panel is

for Tmin. Shaded in grey if for

OBS10 data [Colour figure can

be viewed at

wileyonlinelibrary.com]

ROZANTE ET AL. 13

http://wileyonlinelibrary.com


observations (Figure 9a,b). For Tmax, ERA5 and OBS90i
tend to underestimate. For Tmin, ERA5 tends to over-
estimate, while OBS90i underestimate (Figure 9b); the
differences are relatively large, peaking 1.5�C during aus-
tral winter. SAMeT also depicts the smaller mean error
for both Tmax and Tmin with ERA5 displaying the larg-
est mean errors (Figure 9c,d). ERA5 tends to display a
flattest diurnal cycle (smaller Tmax and larger Tmin)
than the other data sources. Regarding the RMSE,
SAMeT also depicts the smaller errors (Figure 9e,f) being
of about 1.5 and 1.3�C for Tmax and Tmin, respectively.
Tmin presents a more pronounced annual variability
with largest errors during winter (Figure 9f). ERA5 and
OBS90i present a pronounced annual variability smaller
error (1.6�C) for austral summer and larger values for
austral winter (2.7�C) (Figure 9f). In addition, the Pear-
son correlation coefficient also indicates that SAMeT
performs better than the other data sets (Figure 9g,f).
OBS90i and ERA5 depict similar correlations, OBS90i
depicts slightly larger correlations than ERA5
(Figure 9g).

For BOX4, the region with the lowest number of
observations, SAMeT and OBS90i are similar for the
whole period. ERA5 displays smaller temperatures for
Tmax and larger for Tmin (Figure 10a,b). Although
SAMeT and OBS90i are close, it must be noted that
SAMeT overestimate (on average 0.2�C), whereas OBS90i
underestimate (on average −0.3�C). ERA5 underesti-
mates (on average −1.5�C) for Tmax and overestimates
(on average 0.7�C) for Tmin for the whole period
(Figure 10c,d). SAMeT also depicts the smaller values of
RMSE for Tmax and Tmin (on average 1.3�C)
(Figure 10e,f), whereas the ERA5 depicts the larger
RMEs. The correlation displays a substantial variation
along the period (Figure 10g,h). The correlation for Tmin
shows that SAMeT performs better than the other prod-
ucts, while for Tmax the correlation oscillates along the
period. Averages indicate that correlations for Tmax are
slightly better for SAMeT (0.85) than for OBS90i (0.80)
and ERA5 (0.82) (not shown).

As an example, the spatialized Tmax and Tmin using
SAMeT, OBS90i and ERA5 are depicted for January 10,

FIGURE 11 Spatial distribution of SAMeT (a, f), OBS90i (b, g) and ERA5 (c, h) for Tmax and Tmin, along with the differences between

SAMeT and OBS90i (d, i), and SAMeT and ERA 5 (e, j) for January 10, 2011 [Colour figure can be viewed at wileyonlinelibrary.com]
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2011. The differences between SAMeT, OBS90i and the
ERA5 interpolated to the SAMeT grid are also presented
(Figure 11). The spatial fields obtained for SAMeT are
similar to those obtained through the other data sources,
although some differences can be noted, like for example
SAMeT is smoother than ERA5 (Figure 11a–c,f–h). How-
ever, the largest differences are found between SAMeT
and OBS90i along the Andean region (Figure 11d,i).
Those differences are partially caused by the use of SLRT
in OBS90i, which is stronger than ELRT used in SAMeT
and responsible for smaller temperatures obtained for
OBS90i. The narrower diurnal range of ERA5 when com-
pared against SAMeT is also evidenced, with a warmer
Tmax (Figure 11e) and a cooler Tmin for SAMeT
(Figure 11j).

4 | CONCLUSIONS AND
PERSPECTIVE

A new methodology for spatialization of temperature
fields that corrects elevational aspects coined as the South
American Mapping of Temperature (SAMeT) was devel-
oped. SAMeT makes use of independently estimated LRT
(ELRT) for Tmax and Tmin, a combination of observed
data, ERA5 reanalysis and GTOPO30. The ELRT was
computed via simple linear regression using 40 years of
unbiased ERA5 reanalysis data and made valid for differ-
ent seasons and for four subdomains selected over South
America. The spatialization gave rise to a twice a day spa-
tial field of temperature also named SAMeT. Cross vali-
dation of SAMeT's temperature fields against observed
data (OBS10) not used in the constructions of SAMeT are
performed. The evaluation was performed for the 2011–
2013 period, which is one of the periods with more avail-
able observational data. However, evaluations were also
performed for 2019 which was a period with few reported
observational data. Results were contrasted to similar val-
idations using an alternative spatialized field (OBS90i)
that use the standard LRT (SLRT) and also against ERA5
reanalysis data.

The ELRT is weaker than the moist SLRT
(−6.5�C�km−1) and likewise is weaker under moist condi-
tions than over dry conditions. This is related to the
larger thermal inertia of the humid air, yet the release of
latent heat at higher elevations has also been suggested
(Blandford et al., 2008; Minder et al., 2010). The weaker
ELRT suggests a distinction between superficial lapse
rate and free atmosphere lapse rate (Gardner et al., 2009;
Wang et al., 2018; Lute and Abatzoglou, 2021). As a con-
sequence, there is a tendency to underestimate tempera-
ture fields corrected by the elevation when the SLRT is
used. The spatialization of temperature obtained through

an ELRT in SAMeT improved the metrics when com-
pared to the other spatialization (OBS90i) that uses SLRT
and also compared to the ERA5 reanalysis. The compari-
sons were based on maximum and minimum tempera-
tures, within the four different regions represented by
defined boxes. ERA5 tends to underestimate Tmax and
overestimate Tmin, consequently the range of extremes
related to ERA5 are narrower. Systematic errors for
ERA5 were also reported in other studies (e.g.,
Bandhauer et al. (2020) for Scandinavia, Carpatos and
Alpes or Johannsen et al. (2019) for the Iberian
Peninsula).

In general terms, the spatialization of temperature
improves data obtained exclusively from ERA5
reanalysis. In particular SAMeT improves results
obtained through spatialization with the standard lapse
rate (OBS90i), for instance OBS90i underestimates tem-
perature within all the boxes (negative bias). The ELRT
produces smaller rates for the decrease of temperature
with height. This is not a peculiar behaviour for South
America as it has been already identified for the
Himalayas (Romshoo et al., 2018), the Tibetan Plateau
(Wang et al., 2018; Zhang et al., 2019), China (Qin et
al., 2018) and for the Arctic (Gardner et al., 2009). The
annual cycle is also well represented by all data sources
used; however, SAMeT displayed values closest to the
observations. SAMeT also depicts smaller RMSEs and
higher values for Pearson correlations.

We also would like to stress that our selected
approach was based on practical results. In fact, when we
used the zeroth order approach (i.e., using a unique LRT
for the whole South American continent, based on an
EOF analysis of the temperature), we already produced a
surface temperature product that resulted in a better sur-
rogate for OBS90i and ERA5 reanalysis. The metrics used
for this assertion were exactly the same as those reported
in the present report. Moreover, when we performed the
separation in boxes, we obtained even better results than
those using a unique LRT for the whole SA. Thus, based
on the obtained results, we decided to report the submit-
ted work. In order to be useful for a diversity of users and
researchers, daily values of SAMeT has been made opera-
tionally available on the website of the National Institute
for Space Research (INPE) (http://ftp.cptec.inpe.br/
modelos/tempo/SAMeT).

Finally, we would like to say that there are a number
of lines in course for future improvements (some of those
were suggested by the anonymous reviewers). The use of
MODIS land surface temperature and emissivity data can
be used as another source for kilometre-scale high resolu-
tion temperature datasets. Furthermore, we also recog-
nize that there are technically superior and potentially
better approaches for data regionalization than the
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reported here. A future development for SAMeT includes
the use of clusterization before the ELRT is computed.
Spatial clustering aims to identify contrasting regimes
that merit a separate lapse rate (Lute and
Abatzoglou, 2021) and also to distinguish regimes that
can be grouped together. There exist options for
clusterization like k-means, which englobes techniques
used to group statistically and objectively data that shares
common characteristics allowing to develop products
targeting specific groups. At the heart of data clustering
are the measures for dissimilarities, the basic measure-
ment are the Euclidean distance, but other metrics like
Manhattan dissimilarity, correlations, cross-entropy and
topoclimatic dissimilarity approach (TDA) are also used
(Lute and Abatzoglou, 2021). Special considerations must
be taken for the clusterization of time series, because cor-
relations with a lag, might erroneously classify a group of
stations as further apart. Recent interactions with users
of SAMeT also suggest that the development of a com-
panion product for the dew point temperature could be
beneficial for atmospheric, hydrological, agriculture and
ecology modelling, as well as for the design of a diverse
gama of new products useful for monitoring purposes.
We have also performed preliminary research and noted
that a reduction of the influence radius around stations
over mountainous regions results in further improve-
ments of the metrics. We expect to report the ongoing
work in a subsequent research paper.
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