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Performance of precipitation products obtained from
combinations of satellite and surface observations
José Roberto Rozante , Enver Ramirez Gutierrez, Alex de Almeida Fernandes
and Daniel A. Vila

Center for Weather Forecast and Climate Studies, National Institute for Space Research, Cachoeira Paulista,
Brazil

ABSTRACT
Knowing the spatiotemporal distribution of precipitation is
undoubtedly important for planning various economic/social activ-
ities, such as agriculture, livestock, and energy production. The
coarse observation density over certain regions may significantly
compromise the quality of precipitation products interpolated by
only surface observations. To minimize the lack of observations
over certain regions, the Centre for Weather Forecast and Climate
Studies (CPTEC) of National Institute for Space Research (INPE)
developed two types of blended precipitation products, namely,
the Combined Scheme (CoSch) and MERGE, which combine
observed precipitation data with satellite estimates on a daily
scale. To understand how different blending methodologies impact
the final results, a comparison of each algorithm with independent
rain gauges was performed with a focus over the Brazilian territory.
Both products were generated at a 10-km horizontal resolution
using input data from the Global Precipitation Measurement
(GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG-Early)
for product (Version 5) in conjunction with surface observations
from Surface Synoptic Observations (SYNOP), data collection plat-
forms (DCPs) and data from regional meteorological centres. The
cumulative 24-hour precipitation was evaluated for the period from
June 2014 to June 2017. The results show that both products
reliably characterize the precipitation regimes over most of the
study regions, although MERGE and CoSch tend to over- and under-
estimate the amount of precipitation, respectively. However, the
magnitude of the Bias achieved by MERGE is smaller than that
achieved by CoSch. Overall, MERGE outperforms CoSch when ana-
lysing rain/no rain and light to moderate rainfall (0.5 to 20.0 mm).
For heavy precipitation (>35.0 mm), the performance of both pro-
ducts is similar. The most significant differences between the two
products occur over the Northeast Region of Brazil (R3 and R4),
where CoSch tends to encounter difficulties characterizing the pre-
cipitation regime during the northeastern wet period (April –
November). In R3 and R4, MERGE relies more on surface observa-
tions, whereas CoSch relies on GPM-IMERG-Early, which could be
associated with the deficiency of GPM-IMERG-Early in estimating
the amount of precipitation associated with warm clouds.
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1. Introduction

Understanding the spatiotemporal distribution of precipitation is important not only for
scientific studies but also for making decisions related to the social and economic aspects of
a country. Over South America, many regions (e.g. those composed predominantly of rain
forest, mountains, desert, or ocean) suffer from limited access to precipitation data, and
hence, the characterization of the ground-based rainfall regime in these regions is compro-
mised. Although remote sensing techniques are useful for filling gaps associated with such
limited access, large uncertainties are still encountered. To minimize such uncertainties,
techniques that combine satellite estimates with rain gauge data are widely used at the
global scale (Huffman et al. 1997; Xie and Arkin 1997) as well as the regional scale, for
example, in China (Chen et al. 2002), Ethiopia (Dinku et al. 2014), South America (Vila et al.
2009; Rozante et al. 2010), Australia (Chappell et al. 2013), and India (Mitra et al. 2013).

Satellites have long been valuable tools for measuring atmospheric parameters at
regular intervals. The first generation of satellite observation systems was initiated during
the 1960 s with the launch of the first weather satellite, namely, the first of the Television
Infrared Observation Satellites series (TIROS-1), which detected cloud systems. Ten years
after TIROS, the first precipitation estimates using the visible channel were made avail-
able. The method known as the cloud index was later improved by Follansbee (1973), who
configured this index to estimate the daily mean precipitation rate. With numerous
technological advances, various improvements to satellite-derived products have been
implemented. By the end of the 1990 s, several onboard satellite sensors were in use to
successfully estimate global precipitation. Currently, a variety of satellite precipitation
products are available for operations and research, including the following: a) Climate
Prediction Centre Morphing technique (CMORPH) (Joyce et al. 2004); b) Tropical Rainfall
Measuring Mission (TRMM) – Multi-satellite Precipitation Analysis (TMPA) (Huffman et al.
2007); c) Precipitation Estimation from Remotely Sensed Information Using Artificial
Neural Networks (PERSIANN) (Hong et al. 2004); d) Global Precipitation Measurement
(GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) (Huffman et al. 2015); and e)
Global Satellite Mapping of Precipitation (GSMaP) (Aonashi et al. 2009).

Other products combine rain gauge-based estimates with estimates from TMPA at the
regional level (Vila et al. 2009; Rozante et al. 2010; Woldemeskel, Sivakumar, and Sharma
2013; Chappell et al. 2013; Mitra et al. 2013); however, as TRMM-TMPA is scheduled to end
soon, these products will be discontinued. With this consideration, the Global
Precipitation Measurement (GPM hereafter) satellite was launched at the beginning of
2014 with the objective of producing a new generation of precipitation and snow
estimates at high spatial (0.1° × 0.1°) and temporal (30 minutes) resolutions. The GPM
mission is considered the natural continuation of the TRMMmission, and the precipitation
product corresponding to TRMM-TMPA is IMERG. Considered the next generation of
satellite-derived precipitation products, IMERG includes previous products, such as
TMPA, CMORPH and PERSIANN. To date, several studies have shown that IMERG outper-
forms TMPA retrievals (Prakash et al. 2016; Tang et al. 2016; Rozante et al. 2018).

The Centre for Weather Forecast and Climate Studies (CPTEC) of the National Institute
for Space Research (INPE) has developed and continued to maintain two different
blended precipitation products, namely, the Combined Scheme (CoSch – Vila et al.
(2009)) and MERGE (Rozante et al. (2010)). Both of these products combine observed
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precipitation data with satellite estimates on a daily scale. Although a variety of similar
products are available on the global scale (e.g., IMERG-Final, TMPA-V7, and GSMaP-Gauge)
, in general, MERGE and CoSch perform better over South America (Rozante et al. 2010;
Brahm et al. 2019), which is probably related to the larger databases accessed by CPTEC,
some of which are not available through the Global Telecommunication System (GTS). In
addition, both CPTEC products are available with latencies on the order of hours after the
data are received (i.e. in near real time). Although the IMERG-Early product is also available
in near real time, this product does not incorporate pluviometric data, whereas IMERG-
Final has a latency of months.

MERGE and CoSch impact a relatively diverse base of users who are not necessarily
confined to an academic environment. For example, a series of reports were published by
the Brazilian Geological Service, superintendency of Minas Gerais, on the use of MERGE to
monitor the sediment plume after the rupture of the Brumadinho dam in January 2019.
MERGE has also been used to monitor the drought in northeastern Brazil, as this product
can be found via public disclosure by the World Bank (Martins et al. 2015). On the other
hand, a recent paper by Brahm et al. (2019) based on CoSch and a weather-related
disaster database showed that the former can satisfactorily capture insurance-relevant
losses on the ground. Thus, both MERGE and CoSch are consolidated products that fulfil
a niche not addressed by other available products. Nevertheless, despite the success of
both MERGE and CoSch, the present paper depicts, for the first time, a more in-depth
comparison of both CPTEC blended precipitation products. In addition, regarding the
technical aspects of the present research and the complexity of the system, CPTEC needs
to lead this type of comparison. Furthermore, although both products are generated
through the same input data, differences have been discovered in the final results due to
differences in the methodologies applied to merge satellite-based information with rain
gauge estimates. In essence, CoSch prioritizes an unbiased approach to obtain the final
product (Vila et al. 2009), while MERGE proposes a blending approach that favours
observational data over regions featuring a high density of observations (Rozante et al.
2010). Initially, MERGE and CoSch were developed using the TMPA product as an input;
the modifications applied to the algorithms will be described in the methodology section.

The present study is designed to provide a more in-depth comparison of these two
CPTEC products and to understand the differences and evaluate the performance of the
abovementioned products over different regions of Brazil. The remainder of this paper is
organized as follows: Section 2 addresses the data used and the applied statistics as well as
the area of study and the regionalization according to distinguished precipitation regimes.
In Sections 3 and 4, the results and discussions are presented, and in Section 5, the main
conclusions and summary of this work are highlighted.

2. Data and methodology

2.1. Area of study and characterization of the precipitation regimes

Brazil is characterized by its large area and broad diversity of climates, topographies, and
precipitation regimes. In this sense, to better study the behaviours of CoSch and MERGE, it
is necessary to distinguish among the various regions and pluviometric regimes
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throughout the country. The present study uses the criteria defined by Rozante et al.
(2018), who applied data spanning 18 years to define five different pluviometric regions
(R1-R5, see Figure 1). The southernmost region R1 (blue) presents well-distributed
precipitation year-round. R2 (green) covers a large area of Brazil characterized by
a large amount of precipitation during austral summer (December January and
February (DJF)) and little precipitation during winter (June July and August (JJA)). R3
(black), located in northeastern Brazil, does not present a well-defined pluviometric
regime, which is probably because it is situated within a transition region. R4 (orange)
is located on the coast of northeastern Brazil and presents precipitation during JJA with
minimum precipitation during DJF. Finally, R5 (red) covers the northern part of the study
domain and presents more intense precipitation during January February and
March (JFM).

Figure 1. Spatial distribution of the precipitation climatology (1998–2016) based on MERGE data
(Rozante et al. 2018); the climatology is computed for each grid box (approximately 2°). The indicated
regions (R1-R5) characterize different precipitation regimes.
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2.2. Data sources

The data used for this study are divided into observational and estimated data, and they
are described below.

2.2.1. Observational data
The pluviometer data employed herein are from the Global Telecommunication System (GTS),
the Brazilian National Meteorological Service (INMET), the National Water Agency (ANA), the
ParanáMeteorological System (SIMEPAR), theMinas Gerais Energy Company (CEMIG), and the
Agronomy Institute of Campinas (IAC), in addition to other regional centres. On average,
considering the whole studied domain, approximately 3300 pluviometers were used to
generate the products for each day (Figure 3). The process used to construct 24-hour
accumulations of data follows the recommendation of the World Meteorological
Organization (WMO), i.e. the accumulated precipitation between 12 Greenwich Mean Time
(GMT) of the previous day and 12 GMT of the current day (WMO 2009).

The quality control phase has two stages: a) an objective treatment that identifies and
marks potentially spurious data and b) a subjective analysis that determines whether to
accept or reject the marked data. Further details about the procedure used by CPTEC/INPE
can be found in Rozante et al. (2018).

2.2.2. Satellite precipitation estimates
The IMERG Core Observatory Satellite (Huffman et al. 2015) launched on 27 February 2014
is used for the precipitation estimates. The estimation algorithm was built to calibrate,
combine and interpolate satellite-derived precipitation data (e.g., microwave and infra-
red) and worldwide observational data. IMERG is available in near real time for operational
purposes and with a two-month delay for research purposes. IMERG provides two near-
real-time precipitation estimate options: early and late. The IMERG-Early product provides
a quick estimate (with a 4-hour lag) considering only data that have been collected at that
moment, while the IMERG-Late product has a 12-hour lag (after more data have arrived)
and is obviously more precise. The IMERG-Early product used in this study was obtained
from ftp://arthurhou.pps.eosdis.nasa.gov/gpmallversions/V05/with a temporal resolution
of 30 minutes and a spatial resolution of 0.1° × 0.1°. IMERG-Early covers most of the globe:
all surface areas between 60°N and 60°S, corresponding to 87% of the Earth’s surface.
According to the WMO guidelines, IMERG-Early data are also accumulated over 24 hours.

2.2.3. MERGE
MERGE (Rozante et al. 2010) is a technique intended to minimize uncertainties in pre-
cipitation data associated with interpolations over regions with a low density of pluvi-
ometers. The observational data are combined with GPM-IMERG-Early satellite estimates
(Huffman et al. 2015). MERGE was described in Rozante et al. (2010) using the TMPA
product as the satellite data. With TRMM-TMPA being discontinued and replaced by GPM-
IMERG, the only necessary adaptation to the algorithm was to remove a relatively large
number of points close to each observation station to preserve the action radius of that
station. The MERGE product relies on the following steps. First, the pluviometric data are
georeferenced onto the satellite grid. Then, for sites near pluviometric stations, a 5 × 5
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square grid box of satellite data is removed. Finally, all the pluviometric data are inter-
polated, and any remaining satellite estimates are performed.

2.2.4. CoSch
CoSch (Vila et al. 2009) facilitates a high-resolution analysis based on a combination of
pluviometers with satellite precipitation estimates over continental South America. The
CoSch methodology is based on additive and multiplicative corrections to obtain a smaller
Bias of the product with respect to pluviometric data. This product was also developed
during the TRMM-TMPA era; however, no adaptation was needed due to changes in the
satellite database. The GPM-IMERG-Early product (Huffman et al. 2015) is used as a first
estimate, and daily allowed rain gauge data are used to correct the first estimate.

2.3. CoSch – MERGE evaluation methodology

Both products are studied within a 3-year period (26 June 2014 to 25 June 2017), and
although CoSch and MERGE are both generated for South America at a resolution of
10 km, only regions over the territory of Brazil are studied because of the broad availability
of data over this country. Cross-validation tests (Chen et al. 2002, 2008) are then applied to
quantify the performance of the algorithms.

At each time step (one day), the rain gauge data are randomly split into two parts, with
90% used for the CoSch and MERGE algorithms (using the IMERG-Early product as input
data) and 10% reserved for validation. Figure 2 illustrates the data splitting scheme. Due
to the different precipitation regimes described in section 2.1, all statistics are calculated
for each individual region (R1 through R5). It is worth noting that randomly selecting rain
gauges from the whole region every day might lead to variability in the number of
stations used to adjust and validate the products for each region. Indeed, recent work
by Prakash et al. (2019) assessed the uncertainties of gridded gauge-based rainfall
products and suggested that variability in the rain gauge density impacts the mean
values and thresholds for precipitation. However, due to the large sample of days (span-
ning a 3-year period), the mean value of the removed gauges is very close to 10% for
every region (see Figure 3); therefore, the significance and robustness of the statistics are
not compromised.

2.4. Evaluation metrics

For evaluation purposes, seven commonly used metrics are computed, namely, three
statistical index and four categorical classifications. The three statistical metrics include
the root mean square error (RMSE), the mean error (ME) and the Pearson correlation
coefficient (r) (see Table 1), whereas the categorical index used in this study include the
equitable threat score (ETS) (Mesinger 2008), probability of detection (POD), relative Bias
(Bias), and false alarm ratio (FAR). All of the values of these categorical indexes are
obtained from a contingency table (Table 2), and their equations and optimal values are
summarized in Table 3. In this research, daily precipitation data are grouped into eight
categories with different rain intensities (0.5, 2.0, 5.0, 10.0, 15.0, 20.0, 35.0 and 50.0 mm
day−1). To facilitate further discussion, these categories are grouped into rain/no rain,
light, moderate and heavy rain classes, as shown in Table 4.
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The POD, FAR, and Bias results are analysed through Roebber’s performance diagram
(Roebber 2009), which synthetizes several metrics within a geometric plot, where the
abscissa represents the success measured between 0 and 1 (0 representing a completely
false alarm and 1 representing a complete success) and the ordinate represents the POD,
which is also measured between 0 and 1 (1 corresponding to the maximum POD). Strait
lines represent the relative Bias; a 45°angle corresponds to a perfect Bias, while larger
(shorter) angles represent overestimation (underestimation). In addition, there are hyper-
bolic curves representing the critical success index (CSI); the curve closest to the right
upper corner of the diagram represents the better CSI.

3. Results

3.1. Temporal evolution

In this section, the temporal evolution of the mean precipitation value for each region on
a daily scale and the values of the three continuous statistical indexes (ME, RMSE and r) for
each algorithm are presented. The mean precipitation values are calculated only for the
points reserved for validation (10%) and do not represent the areal average of the
corresponding region.

Figure 4 depicts the results for R1. Figure 4(a) shows the temporal evolution of the
mean precipitation value for each day; evidently, both products represent the observed
behaviour relatively well. Analysis of the ME (Figure 4(b)) shows that MERGE tends to

Figure 2. Illustrative scheme of the processes to evaluate the CoSch and MERGE products.
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overestimate the amount of precipitation by approximately 0.11 mm day−1, while CoSch is
prone to underestimating the amount of precipitation by approximately −0.21 mm day−1.
The RMSE evolution is depicted in Figure 4(c), demonstrating that both products produce
very similar results. The largest RMSE values are found in January. An analysis of r shows that
the correlations between MERGE and the rain gauges are slightly higher than those for
CoSch for the whole analysed period (Figure 4(d)). In addition, R2 (Figure 5(a)) depicts results
very similar to those obtained for R1, that is, very similar temporal evolution characteristics

(a)

(b)

(c)

(d)

(e)

Figure 3. Total number of rain gauges for each region (black) and number of randomly removed
gauges (red) for the regions R1(a), R2(b), R3(c), R4(d) and R5(e). Dotted lines represent the mean
values for the whole period.
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between CoSch or MERGE and the observed precipitation. However, MERGE tends to
overestimate the amount of precipitation by approximately 0.18 mm day−1, while CoSch
tends to underestimate the amount of precipitation by approximately −0.11 mm day−1

(see Figure 5(b)). Nevertheless, the RMSE for MERGE is slightly better than that for CoSch
(difference of approximately 0.2 mm day−1, see Figure 5(c)), and the correlations are
slightly better when using MERGE (Figure 5(d)).

Table 1. Statistical index.
Statistical index Root mean square error (mm day−1) Mean error (mm day−1) Pearson correlation coefficient

Equation
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
Pi�Oið Þ2
N

r
ME ¼ 1

N

PN
i¼1

Pi � Oið Þ r ¼
PN

i¼1
Oi��Oð Þ: Pi��Pð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
Oi��Oð Þ2

� � PN

i¼1
Pi��Pð Þ2

� �� �q
Optimum value 0 0 1

Where;
Pi – Precipitation products (MERGE or CoSch);
Oi – Observational data (10% of the available pluviometric data are randomly removed);
i – Point of station;
N – Number of stations.

Table 2. Contingency table.
Rain (gauge) No rain (gauge) Total

Rain (Precipitation products) a = H b p = (a + b)
No rain (Precipitation products) c d (c + d)
Total o = (a + c) (b + d) n = (a + b + c + d)

Where,
a – hit (H) – an event estimated to occur, and it did occur;
b – false alarm – an event estimated to occur, but it did not occur;
c – miss – an event estimated not to occur, but it did occur;
d – correct negative – an event estimated not to occur and it did not occur;
H – Number of hits;
p – Number of precipitation products;
o – Number of observations;
n – Total number.

Table 3. Categorical index used.
Categorical index Equation Optimum value

Adjusted equitable threat score (Mesinger 2008)
ETS ¼ Ha�o2

n

� �
pþoþHa�o2

nð Þwhere; Ha ¼ o 1� o�H
o

� �o
p

� � 1

Probability of detection POD ¼ H
o

1
False alarm ratio FAR ¼ p�H

p
0

Bias Bias ¼ p
o 1

Where,
Ha is the bias adjusted value of H;
p, o, H and n was defined in Table 2.

Table 4. Rain classification and thresholds.
Rain intensity classification Precipitation thresholds (mm)

Rain/no rain 0.5
Light 2.0 to 5.0
Moderate 10.0 to 20.0
Heavy 35.0 to 50.0
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An analysis of R3 and the temporal evolution of the observed precipitation (Figure 6(a))
shows that CoSch underestimates the pluviometric regime between April and October;
for the other months, both products are close to the observed values. The same under-
estimation tendency (approximately −0.23 mm day−1) is noted in the ME (Figure 6(b));
note that in terms of the ME, MERGE overestimates the amount of precipitation with
a mean of approximately 0.08 mm day−1. Some significant differences are detected in the
RMSE (Figure 6(c)) between the products both between August and December 2015 and
between June and September 2016. However, the r values (Figure 6(d)) indicate slightly
larger correlations with the observations for MERGE than for CoSch, with a mean correla-
tion difference of approximately 0.13.

The precipitation time series for R4 (Figure 7(a)) indicates that CoSch does not perform
well in northeastern Brazil and that this deficiency persists over the whole analysed period,
with special emphasis during the wet months. In contrast, MERGE follows the observations
quite closely for the whole analysed period. For this region (Figure 7(b)), CoSch also exhibits
frequent underestimation (mean of approximately −1.01 mm day−1), whereas the ME for
MERGE is close to zero. Figure 7(c) displays the RMSE obtained for CoSch, with a mean
difference between MERGE and CoSch of approximately 0.46 mm day−1. Furthermore, the
calculated values of r are also depicted in Figure 7(d); here, CoSch presents a mean correla-
tion of approximately 0.39, while MERGE presents a mean correlation of 0.57.

(a) (b)

(c) (d)

Figure 4. Time series of (a) the evolution of the precipitation spatial average, (b) Mean Error (ME), (c)
Root Mean Square Error (RMSE) and (d) Pearson correlation coefficient (r) for R1 (MERGE is the black
line, and CoSch is the blue line). The mean values for the ME, RMSE and r are depicted close to the
figure titles.
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The results for R5 are very similar to those obtained for R1 and R2; that is, both
products represent the pluviometric regime for the whole period quite well (Figure 8(a)),
with MERGE tending to overestimate (mean of 0.18 mm day−1) and CoSch tending to
underestimate (mean of −0.14 mm day−1) the precipitation (Figure 8(b)). The RMSE
(Figure 8(c)) also indicates a very similar behaviour between the two products, which
present small differences for certain days during the analysed period. The values of
r (Figure 8(d)) show that MERGE presents slightly larger correlations than CoSch during
the analysed period.

3.2. Quantitative precipitation estimates (QPEs)

In this section, the Quantitative precipitation estimates (QPEs) are analysed for eight
different thresholds (0.5, 2.0, 5.0, 10.0, 15.0, 20.0, 35.0, 50.0 mm). The results are based
on a contingency table (Table 2), and the precipitation intensity is defined according to
Table 4. The CSI is presented in the diagram (Roebber 2009). However, because the
behaviour of the CSI is similar to the ETS, it does not need to be discussed separately.
Indeed, more attention has been paid to the ETS since the CSI has a relatively low accuracy
(Mesinger 2008). The POD, FAR and Bias are also presented in Roebber’s performance
diagram.

(b)

(d)(c)

(a)

Figure 5. Time series of (a) the evolution of the precipitation spatial average, (b) Mean Error (ME), (c)
Root Mean Square Error (RMSE) and (d) Pearson correlation coefficient (r) for R2 (MERGE is the black
line, and CoSch is the blue line). The mean values for the ME, RMSE and r are depicted close to the
figure titles.
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Figure 9(a) shows that for R1, MERGE exhibits better performance for several thresh-
olds: rain/no rain (0.5 mm), light precipitation (2.0 to 5.0 mm) and moderate precipitation
(10.0 to 15.0 mm). For heavy precipitation (greater than 20.0 mm), the performance of
both products is very similar. However, both products exhibiting decreasing performance
for moderate to heavy precipitation. According to Roebber’s performance diagram
(Figure 9(b)), the POD presents higher values for MERGE under rain/no rain and light to
moderate precipitation. For thresholds above 20.0 mm, CoSch and MERGE display similar
performance. In terms of the Bias, CoSch presents better results for thresholds between
0.5 and 15.0 mm with multiplicative Bias values very close to 1 (ideal case), whereas
MERGE tends to overestimate the amount of precipitation. For the categories above these
thresholds, both products tend to underestimate the amount of precipitation. The FAR
tends to increase with increasing precipitation and is slightly smaller for CoSch between
0.5 and 10.0 mm; above these thresholds, the results are very similar between both
products.

For R2, the ETS (Figure 9(c)) shows that MERGE boasts better performance than CoSch
for all thresholds. However, the performance of both products drops with an increase in
the precipitation threshold, except for precipitation between 0.5 and 2.0 mm. In terms of
the POD and Bias (Figure 9(d)), the results for R2 are very close to those for R1, with MERGE
having more opportunities to detect precipitation up to 20.0 mm and CoSch depicting an

(b)

(c) (d)

(a)

Figure 6. Time series of (a) the evolution of the precipitation spatial average, (b) Mean Error (ME), (c)
Root Mean Square Error (RMSE) and (d) Pearson correlation coefficient (r) for R3 (MERGE is the black
line, and CoSch is the blue line). The mean values for the ME, RMSE and r are depicted close to the
figure titles.
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almost perfect Bias score. Figure 9(d) also indicates that for the categories between rain/
no rain and light precipitation, MERGE has a relatively large FAR; in contrast, for heavy
precipitation, CoSch has a relatively large FAR, whereas for moderate precipitation, the
products have similar FAR values.

R3 represents the interior of northeastern Brazil; in this region, MERGE presents better
results for the categories between rain/no rain and light precipitation. For the other
thresholds, the performance of either product is very similar and drops considerably as
the threshold increases (Figure 9(e)). In this case, the underestimation tendency of CoSch
is revealed by the Bias results (Figure 9(f)). MERGE overestimates precipitation in the
categories from rain/no rain to light precipitation. For moderate to heavy precipitation,
both products have similar Bias results. The POD shows that MERGE detects more events
than CoSch for thresholds between 0.5 and 15.0 mm; however, MERGE also has larger FAR
values (Figure 9(f)).

In the eastern band of northeastern Brazil (R4, Figure 9(g)), MERGE outperforms CoSch in
several categories except for very heavy precipitation (greater than 50.0 mm). Moreover,
the performance of MERGE is almost constant (approximately 0.5) among the different
precipitation categories. On the other hand, CoSch presents a performance increase as the
precipitation threshold increases – from 0.28 for rain/no rain to 0.5 for heavy precipitation
which results in CoSch exhibiting better performance than MERGE. Considering the Bias

(b)

(c) (d)

(a)

Figure 7. Time series of (a) the evolution of the precipitation spatial average, (b) Mean Error (ME), (c)
Root Mean Square Error (RMSE) and (d) Pearson correlation coefficient (r) for R4 (MERGE is the black
line, and CoSch is the blue line). The mean values for the ME, RMSE and r are depicted close to the
figure titles.
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(Figure 9(h)), CoSch tends to underestimate the observed precipitation in all categories,
while MERGE displays a tendency to overestimate for thresholds between 0.5 and 5.0 mm
and underestimate for thresholds above 15.0 mm. Similar to R3, the POD and FAR values
associated with MERGE are larger than those obtained through CoSch (Figure 9(h)).

In R5, which represents northern Brazil, very similar ETS values are obtained for both
products (Figure 9(i)). A slight increase in performance is observed between 0.5 and 2.0 mm,
and a reduction is observed in the other thresholds. The Bias results (Figure 9(j)) indicate that
CoSch presents a multiplicative bias very close to the ideal value (one), with the exception of
heavy precipitation, which CoSch tends to underestimate. MERGE overestimates precipita-
tion from rain/no rain to light precipitation. Formoderate to heavy precipitation,MERGE and
CoSch show similar behaviours. Figure 9(j) also depicts results for the POD and FAR that are
very similar to those found for R2 and R4, that is, large values of the POD and FAR for the
categories between rain/no rain and light precipitation. Finally, the results for moderate to
heavy precipitation are similar between the different products.

3.3. Spatial distributions

The spatial distributions of MERGE and CoSch are analysed in consideration of both the
mean value over the whole study period in every grid point the differences between the

(b)

(c) (d)

(a)

Figure 8. Time series of (a) the evolution of the precipitation spatial average, (b) Mean Error (ME), (c)
Root Mean Square Error (RMSE) and (d) Pearson correlation coefficient (r) for R5 (MERGE is the black
line, and CoSch is the blue line). The mean values for the ME, RMSE and r are depicted close to the
figure titles.
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(b)

(c)

(e) (f)

(g) (h)

(i) (j)

(d)

(a)

Figure 9. Adjusted equitable threat score (left panel) and the performance diagram (right panel) for
MERGE (black) and CoSch (blue) for regions R1 (a and b), R2 (c and d), R3 (e and f), R4 (g and h), and R5
(i and j). The circles represent the eight precipitation thresholds. The smallest circle represents the
rain/no rain threshold (0.5 mm), and the largest circle represents the threshold above 50.0 mm.

INTERNATIONAL JOURNAL OF REMOTE SENSING 7599



products (Figure 10). In general, the spatial patterns are very similar, except for those in
northeastern Brazil, where the precipitation regimes R3 and R4 are located (Figure 10(a)).
CoSch (Figure 10(b)) depicts an inability to characterize precipitation regimes that present
values smaller than the observed values. The differences between MERGE and CoSch
(Figure 10(c)), reveal that MERGE depicts consistently larger values of precipitation all over
Brazil, and the largest differences occur over the north and northeastern parts of the
country.

4. Discussion

Blended regional products, which have been developed for several regions (China,
Australia, India, Ethiopia, and Brazil, among others), have shown numerous advantages
over both satellite estimates and gauge-only interpolations (Wu et al. 2018; Li and Shao
2010; Chappell et al. 2013; Mitra et al. 2013; Dinku et al. 2014; Vila et al. 2009; Rozante
et al. 2010). In particular, the two CPTEC products examined herein capture the
observed precipitation time series well. However, differences are noted between the
products. In regions R3 and R4, CoSch displays a relatively poor performance compared
to MERGE. Rozante et al. (2018) found similar errors for regions R3 and R4 when
analysing global precipitation products (IMERG-Final, TMPA-V7, and GSMaP-Gauge);
thus, the poor performance of CoSch could be associated with its method that prior-
itizes satellite estimates. In terms of QPEs, both regional CPTEC products perform better
than the global products (Figure 11). Additionally, better skills are obtained for regions
R1, R2 and R4. Among them, in region R4, MERGE depicts a stable and satisfactory
prediction skill across the different precipitation thresholds, while CoSch is characterized
by decaying performance in region R4, which is associated with the deficiencies of
CoSch in the reproduction of rain. Moreover, for the < 2.0 mm threshold in region R4,
CoSch performs even worse than GSMaP-Gauge but is still superior to both IMERG-Final
and TMPA-V7.

In a recent study, Rozante et al. (2018) compared global products for the same
regions used in the present study and found that in terms of QPEs, GSMaP-Gauge
performs better than the other global products. The results of the present paper show

(a) (b) (c)

Figure 10. Spatial distribution of the mean precipitation (whole period) for (a) MERGE and (b) CoSch,
(c) difference between (a) and (b).
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that MERGE and CoSch generally perform even better than GSMaP-Gauge in all the analysed
regions (Figure 11). Blended satellite-gauge products are expected to improve independent
deficiencies in disparate product satellite estimates and observed gauge data. Satellites are
spatially comprehensive yet less accurate, while observational data are more accurate but
spatially restricted (Chappell et al. 2013). Thus, the initial hypothesis is satisfactorily achieved
with the two CPTEC products, which perform better and with shorter latency than global
products. The evaluations of five different regions allow us to better understand the
performance of both products in different precipitation regimes. Furthermore, regionalized
evaluations avoid limitations associated with large-scale averages. Renzullo et al. (2011)
used a stochastic approach to obtain spatially explicit rainfall uncertainties, and Prakash
et al. (2019) demonstrated that variability in the rain gauge density impacts themean values
and thresholds of precipitation. However, the random selection of removed gauges reaches
nearly 10% for every region (see Figure 3); therefore, the significance and robustness of the
statistics are not compromised, and thus, the regional characteristics of the products can be
reliably assessed.

5. Conclusions

The performance of the precipitation estimates obtained from the CoSch and MERGE
algorithms are evaluated for five regions in Brazil characterized by distinct precipitation

(b)

(c) (d)

(a)

Figure 11. Adjusted equitable threat score for MERGE (black), CoSch (blue), GSMaP-G (red), IMERG-F
(green), TMPA-V7 (purple) for regions R1 (a), R2 (b), R3 (c), R4 (d). Figure adapted from Rozante et al. (2018).
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regimes. The period of analysis is four years from 26 June 2014, to 25 June 2017. The 24-
hour accumulated precipitation for regions R1, R2 and R5 is well represented by both
products. However, for R3 and R4, where the observational network is dense, only MERGE
represents the precipitation well over the study period; in contrast, CoSch cannot effec-
tively capture the precipitation patterns from April to November, during which the
precipitation regime is dominated by warm clouds. Warm clouds are underestimated by
satellite sensors (Rozante et al. 2018; Zeng et al. 2018) and consequently directly affect the
CoSch results since the CoSch algorithm relies on the removal of both additive and
multiplicative biases. MERGE does not seem to be affected by such a satellite deficiency
over regions with a high observational density, which is likely related to the fact that
MERGE retrieves information from sensors in the neighbourhood of existing observations
and interpolates only observational data. Upon analysing various statistical indexes, the
ME shows that MERGE presents a tendency to overestimate the amount of precipitation,
while CoSch underestimates the amount of precipitation. This behaviour is observed over
all the analysed regions, with R3 and R4 presenting larger differences between MERGE
and CoSch. In accordance with the ME, the RMSE and r values indicate better results for
MERGE, mainly over R3 and R4.

The QPEs reflect that MERGE performs better for rain/no rain to light precipitation
(0.5 to 5.0 mm) for all the analysed regions. For moderate rain (10.0 to 20.0 mm), MERGE
performs better in R1, R2 and R4. However, the results in R3 and R5 are very similar.
Concerning heavy precipitation (35.0 to 50.0 mm), the performance of both products is
very similar, with the exception of R4, where MERGE performs better than CoSch for the
35.0 mm threshold. For the 50.0 mm threshold, CoSch is superior to MERGE. The QPEs
show that for all the analysed regions, MERGE overestimates the precipitation in the
rain/no rain to light precipitation categories and tends to underestimate it in the heavy
precipitation category. On the other hand, CoSch depicts an almost perfect Bias for rain/
no rain to moderate precipitation in regions R1, R2 and R5, whereas it underestimates
the amount of precipitation in all the categories for R3 and R4. Furthermore, for the
heavy precipitation category, the PODs of both products are similar, while for the rain/
no rain and light and moderate precipitation categories, MERGE performs better than
CoSch.

The results obtained thus far show that CPTEC’s product performs better than the
global products and with a decreased latency. In specific terms, MERGE offers slightly
better results than CoSch, especially for R3 and R4. Based on the present study, actions
can be taken to improve the CoSch and MERGE algorithms.
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